The possibility of taking advantage of a fluctuating environment for energy and information transduction is a significant challenge in biological and artificial nanostructures. We demonstrate here directional electrical transduction from fluctuating external signals using a single nanopore of conical shape immersed in an ionic aqueous solution. To this end, we characterize experimentally the average output currents obtained by the electrical rectification of zero time-average input potentials. The transformation of external potential fluctuations into nonzero time-average responses using a single nanopore in liquid state is of fundamental significance for biology and nanophysics. This energy and information conversion constitutes also a significant step towards macroscopic scaling using multipore membranes.

1.
R. D.
Astumian
,
Annu. Rev. Biophys.
40
,
289
(
2011
).
2.
T. L.
Hill
,
Free Energy Transduction and Biochemical Cycle Kinetics
(
Dover
,
New York
,
2005
).
3.
T. Y.
Tsong
,
J. Biol. Phys.
28
,
309
(
2002
).
4.
T. D.
Xie
,
Y.
Chen
,
P.
Marszalek
, and
T. Y.
Tsong
,
Biophys. J.
72
,
2496
(
1997
).
5.
6.
B.
Hille
,
Ionic Channels of Excitable Membranes
(
Sinauer Associates Inc.
,
Sunderland, MA
,
1992
).
7.
M.
Levin
,
BioEssays
34
,
205
(
2012
).
8.
M.
Queralt-Martín
,
E.
García-Giménez
,
V. M.
Aguilella
,
P.
Ramirez
,
S.
Mafe
, and
A.
Alcaraz
,
Appl. Phys. Lett.
103
,
043707
(
2013
).
9.
A. J.
Hudspeth
,
Y.
Choe
,
A. D.
Mehta
, and
P.
Martin
,
Proc. Natl. Acad. Sci.
97
,
11765
(
2000
).
10.
M. L.
Simpson
and
P. T.
Cummings
,
ACS Nano
5
,
2425
(
2011
).
11.
P.
Hänggi
and
F.
Marchesoni
,
Rev. Mod. Phys.
81
,
387
(
2009
).
12.
M. O.
Magnasco
,
Phys. Rev. Lett.
71
,
1477
(
1993
).
13.
D. R.
Chialvo
and
M. M.
Millonas
,
Phys. Lett. A
209
,
26
(
1995
).
14.
J.
Cervera
,
J.
Claver
, and
S.
Mafe
,
IEEE Trans. Nanotechnol.
12
,
1198
(
2013
).
15.
Y.
Hirano
,
Y.
Segawa
,
T.
Kawai
, and
T.
Matsumoto
,
J. Phys. Chem. C
117
,
140
(
2013
).
16.
Z.
Siwy
and
A.
Fuliński
,
Phys. Rev. Lett.
89
,
198103
(
2002
).
17.
Z.
Siwy
and
A.
Fuliński
,
Am. J. Phys.
72
,
567
(
2004
).
18.
P.
Ramirez
,
V.
Gomez
,
M.
Ali
,
W.
Ensinger
, and
S.
Mafe
,
Electrochem. Commun.
31
,
137
(
2013
).
19.
M.
Ali
,
P.
Ramirez
,
S.
Nasir
,
Q.-H.
Nguyen
,
W.
Ensinger
, and
S.
Mafe
,
Appl. Phys. Lett.
104
,
043703
(
2014
).
20.
J.
Cervera
and
S.
Mafe
,
Europhys. Lett.
102
,
68002
(
2013
).
21.
R. D.
Astumian
,
J. C.
Weaver
, and
R. K.
Adair
,
Proc. Natl. Acad. Sci.
92
,
3740
(
1995
).
22.
J. A.
Manzanares
,
J.
Cervera
, and
S.
Mafe
,
Appl. Phys. Lett.
99
,
153703
(
2011
).
23.
J.
Cervera
,
P.
Ramirez
,
S.
Mafe
, and
P.
Stroeve
,
Electrochim. Acta
56
,
4504
(
2011
).
24.
W.
Guo
,
L.
Cao
,
J.
Xia
,
F.-Q.
Nie
,
W.
Ma
,
J.
Xue
,
Y.
Song
,
D.
Zhu
,
Y.
Wang
, and
L.
Jiang
,
Adv. Funct. Mater.
20
,
1339
(
2010
).
25.
M.
Ali
,
P.
Ramirez
,
S.
Mafe
,
R.
Neumann
, and
W.
Ensinger
,
ACS Nano
3
,
603
(
2009
).
26.
Z. S.
Siwy
,
Adv. Funct. Mater.
16
,
735
(
2006
).
27.
I.
Vlassiouk
and
Z.
Siwy
,
Nano Lett.
7
,
552
(
2007
).
28.
P.
Ramirez
,
M.
Ali
,
W.
Ensinger
, and
S.
Mafe
,
Appl. Phys. Lett.
101
,
133108
(
2012
).
You do not currently have access to this content.