The possibility of taking advantage of a fluctuating environment for energy and information transduction is a significant challenge in biological and artificial nanostructures. We demonstrate here directional electrical transduction from fluctuating external signals using a single nanopore of conical shape immersed in an ionic aqueous solution. To this end, we characterize experimentally the average output currents obtained by the electrical rectification of zero time-average input potentials. The transformation of external potential fluctuations into nonzero time-average responses using a single nanopore in liquid state is of fundamental significance for biology and nanophysics. This energy and information conversion constitutes also a significant step towards macroscopic scaling using multipore membranes.
Skip Nav Destination
Article navigation
16 February 2015
Research Article|
February 17 2015
Converting external potential fluctuations into nonzero time-average electric currents using a single nanopore
Vicente Gomez;
Vicente Gomez
1Dept. de Física Aplicada,
Universitat Politècnica de València
, E-46022 València, Spain
Search for other works by this author on:
Patricio Ramirez;
Patricio Ramirez
1Dept. de Física Aplicada,
Universitat Politècnica de València
, E-46022 València, Spain
Search for other works by this author on:
Javier Cervera;
Javier Cervera
2Dept. de Física de la Terra i Termodinàmica,
Universitat de València
, E-46100 Burjassot, Spain
Search for other works by this author on:
Saima Nasir;
Saima Nasir
3Dept. of Material- and Geo-Sciences,
Technische Universität Darmstadt
, D-64287 Darmstadt, Germany
4Materials Research Department,
GSI
Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
Search for other works by this author on:
Mubarak Ali;
Mubarak Ali
3Dept. of Material- and Geo-Sciences,
Technische Universität Darmstadt
, D-64287 Darmstadt, Germany
4Materials Research Department,
GSI
Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
Search for other works by this author on:
Wolfgang Ensinger;
Wolfgang Ensinger
3Dept. of Material- and Geo-Sciences,
Technische Universität Darmstadt
, D-64287 Darmstadt, Germany
4Materials Research Department,
GSI
Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
Search for other works by this author on:
Salvador Mafe
Salvador Mafe
a)
2Dept. de Física de la Terra i Termodinàmica,
Universitat de València
, E-46100 Burjassot, Spain
Search for other works by this author on:
a)
Author to whom correspondence should be addressed. Electronic mail: [email protected].
Appl. Phys. Lett. 106, 073701 (2015)
Article history
Received:
September 03 2014
Accepted:
February 07 2015
Citation
Vicente Gomez, Patricio Ramirez, Javier Cervera, Saima Nasir, Mubarak Ali, Wolfgang Ensinger, Salvador Mafe; Converting external potential fluctuations into nonzero time-average electric currents using a single nanopore. Appl. Phys. Lett. 16 February 2015; 106 (7): 073701. https://doi.org/10.1063/1.4909532
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
Roadmap on photonic metasurfaces
Sebastian A. Schulz, Rupert. F. Oulton, et al.
Superconducting flip-chip devices using indium microspheres on Au-passivated Nb or NbN as under-bump metallization layer
Achintya Paradkar, Paul Nicaise, et al.
Related Content
Multipore membranes with nanofluidic diodes allowing multifunctional rectification and logical responses
Appl. Phys. Lett. (June 2016)
Nernst-Planck model of photo-triggered, pH–tunable ionic transport through nanopores functionalized with “caged” lysine chains
J. Chem. Phys. (January 2013)
Nanoparticle-induced rectification in a single cylindrical nanopore: Net currents from zero time-average potentials
Appl. Phys. Lett. (January 2014)
Neuromorphic responses of nanofluidic memristors in symmetric and asymmetric ionic solutions
J. Chem. Phys. (January 2024)
Modulation of current-time traces by two-pore arrangements of polyimide nanofluidic diodes
Appl. Phys. Lett. (October 2019)