We investigate carrier transport properties of silicon nanowire (SiNW) arrays decorated with TiO2 nanoparticles (NPs). Ohmic conduction was dominant at lower voltages and space charge limited current with and without traps was observed at higher voltages. Mott's 3D variable range hoping mechanism was found to be dominant at lower temperatures. The minimum hopping distance (Rmin) for n and p-SiNWs/TiO2 NPs devices was 1.5 nm and 0.68 nm, respectively, at 77 K. The decrease in the value of Rmin can be attributed to higher carrier mobility in p-SiNWs/TiO2 NPs than that of n-SiNWs/TiO2 NPs hybrid device.

1.
B.
Tian
,
X.
Zheng
,
T. J.
Kempa
,
Y.
Fang
,
N.
Yu
,
G.
Yu
,
J.
Huang
, and
C. M.
Lieber
,
Nature
449
(
7164
),
885
889
(
2007
).
2.
A. I.
Hochbaum
,
R.
Chen
,
R. D.
Delgado
,
W.
Liang
,
E. C.
Garnett
,
M.
Najarian
,
A.
Majumdar
, and
P.
Yang
,
Nature
451
(
7175
),
163
167
(
2008
).
3.
H.
McConnell
,
J.
Owicki
,
J.
Parce
,
D.
Miller
,
G.
Baxter
,
H.
Wada
, and
S.
Pitchford
,
Science
257
(
5078
),
1906
1912
(
1992
).
4.
A. I.
Kingon
,
J.-P.
Maria
, and
S. K.
Streiffer
,
Nature
406
(
6799
),
1032
1038
(
2000
).
5.
F.
Sacconi
,
M. P.
Persson
,
M.
Povolotskyi
,
L.
Latessa
,
A.
Pecchia
,
A.
Gagliardi
,
A.
Balint
,
T.
Fraunheim
, and
A.
Di Carlo
,
J. Comput. Electron.
6
(
1–3
),
329
333
(
2007
).
6.
S.-l.
Wu
,
L.
Wen
,
G.-a.
Cheng
,
R.-t.
Zheng
, and
X.-l.
Wu
,
ACS Appl. Mater. Interfaces
5
(
11
),
4769
4776
(
2013
).
7.
Y.
Cui
,
X.
Duan
,
J.
Hu
, and
C. M.
Lieber
,
J. Phys. Chem. B
104
(
22
),
5213
5216
(
2000
).
8.
V.
Sivakov
,
G.
Andrä
,
A.
Gawlik
,
A.
Berger
,
J.
Plentz
,
F.
Falk
, and
S.
Christiansen
,
Nano Lett.
9
(
4
),
1549
1554
(
2009
).
9.
M. V.
Fernández-Serra
,
C.
Adessi
, and
X.
Blase
,
Nano Lett.
6
(
12
),
2674
2678
(
2006
).
10.
K.-Q.
Peng
,
X.
Wang
,
L.
Li
,
Y.
Hu
, and
S.-T.
Lee
,
Nano Today
8
(
1
),
75
97
(
2013
).
11.
A.
Kumatani
,
Y.
Li
,
P.
Darmawan
,
T.
Minari
, and
K.
Tsukagoshi
,
Sci. Rep.
3
,
1026
(
2013
).
12.
K.
Rasool
,
M.
Rafiq
,
M.
Ahmad
,
Z.
Imran
, and
M.
Hasan
,
Appl. Phys. Lett.
101
(
25
),
253104
(
2012
).
13.
K.-Q.
Peng
,
X.
Wang
,
X.-L.
Wu
, and
S.-T.
Lee
,
Nano Lett.
9
(
11
),
3704
3709
(
2009
).
14.
H.-J.
Kim
,
H. B.
Bae
,
Y.
Park
, and
S. H.
Choi
,
RSC Advances
2
(33),
12670
12674
(
2012
).
15.
K.
Rasool
,
M.
Rafiq
,
C.
Li
,
E.
Krali
,
Z.
Durrani
, and
M.
Hasan
,
Appl. Phys. Lett.
101
(
2
),
023114
(
2012
).
16.
R.
Chen
,
D.
Li
,
H.
Hu
,
Y.
Zhao
,
Y.
Wang
,
N.
Wong
,
S.
Wang
,
Y.
Zhang
,
J.
Hu
, and
Z.
Shen
,
J. Phys. Chem. C
116
(
7
),
4416
4422
(
2012
).
17.
M. Y.
Bashouti
,
M.
Pietsch
,
G.
Brönstrup
,
V.
Sivakov
,
J.
Ristein
, and
S.
Christiansen
,
Prog. Photovoltaics
22
(10),
1050
1061
(
2014
).
18.
E. H.
Nicollian
and
J. R.
Brews
,
MOS (Metal Oxide Semiconductor) Physics and Technology
(
Wiley-Interscience
,
New York
,
1982
), Vol.
1
, p.
920
.
19.
C.-y.
Wang
,
D. W.
Bahnemann
, and
J. K.
Dohrmann
,
Chem. Commun.
2000
(
16
),
1539
1540
.
20.
J.-A.
He
,
R.
Mosurkal
,
L. A.
Samuelson
,
L.
Li
, and
J.
Kumar
,
Langmuir
19
(
6
),
2169
2174
(
2003
).
21.
M.
Ahmad
,
K.
Rasool
,
M.
Rafiq
, and
M.
Hasan
,
Appl. Phys. Lett.
101
(
22
),
223103
(
2012
).
22.
M.
Ahmad
,
K.
Rasool
,
M.
Rafiq
,
M.
Hasan
,
C.
Li
, and
Z.
Durrani
,
Physica E
45
,
201
206
(
2012
).
23.
S.
Wang
,
H.
Li
,
R.
Lu
,
G.
Zheng
, and
X.
Tang
,
Nanotechnology
24
(
28
),
285702
(
2013
).
24.
Z.
Huang
,
N.
Geyer
,
P.
Werner
,
J.
de Boor
, and
U.
Gösele
,
Adv. Mater.
23
(
2
),
285
308
(
2011
).
25.
K.
Fobelets
,
P.
Ding
,
N.
Mohseni Kiasari
, and
Z. A. K.
Durrani
,
IEEE Trans. Nanotechnol.
11
(
4
),
661
665
(
2012
).
26.
D.
Shao
,
M.
Yu
,
J.
Lian
, and
S.
Sawyer
,
Appl. Phys. Lett.
102
(
2
),
021107
(
2013
).
27.
A.
Di Paola
,
G.
Cufalo
,
M.
Addamo
,
M.
Bellardita
,
R.
Campostrini
,
M.
Ischia
,
R.
Ceccato
, and
L.
Palmisano
,
Colloids Surf., A
317
(
1–3
),
366
376
(
2008
).
28.
C.
Byun
,
J. W.
Jang
,
I. T.
Kim
,
K. S.
Hong
, and
B. W.
Lee
,
Mater. Res. Bull.
32
(
4
),
431
440
(
1997
).
29.
V.
Bolis
,
C.
Busco
,
M.
Ciarletta
,
C.
Distasi
,
J.
Erriquez
,
I.
Fenoglio
,
S.
Livraghi
, and
S.
Morel
,
J. Colloid Interface Sci.
369
(
1
),
28
39
(
2012
).
30.
K.
Rasool
,
M. A.
Rafiq
,
M.
Ahmad
,
Z.
Imran
, and
M. M.
Hasan
,
J. Appl. Phys.
113
(
19
),
193703
(
2013
).
31.
J.
Kolk
and
E. L.
Heasell
,
Solid-State Electron.
23
(
3
),
223
228
(
1980
).
32.
J.
Alvarez
,
I.
Ngo
,
M.-E.
Gueunier-Farret
,
J.-P.
Kleider
,
L.
Yu
,
P. R.
Cabarrocas
,
S.
Perraud
,
E.
Rouvière
,
C.
Celle
, and
C.
Mouchet
,
Nanoscale Res. Lett.
6
(
1
),
110
(
2011
).
33.
R.
Rurali
,
Rev. Mod. Phys.
82
(
1
),
427
449
(
2010
).
34.
M. A.
Lampert
,
Phys. Rev.
103
(
6
),
1648
1656
(
1956
).
35.
H. A.
Al Attar
and
A. P.
Monkman
,
Adv. Funct. Mater.
16
(
17
),
2231
2242
(
2006
).
36.
J. H.
Schön
,
C.
Kloc
, and
B.
Batlogg
,
Phys. Rev. B
63
(
24
),
245201
(
2001
).
37.
M.
Rafiq
,
Y.
Tsuchiya
,
H.
Mizuta
,
S.
Oda
,
S.
Uno
,
Z.
Durrani
, and
W.
Milne
,
Appl. Phys. Lett.
87
(
18
),
182101
(
2005
).
38.
L.
Pichon
,
E.
Jacques
,
R.
Rogel
,
A. C.
Salaun
, and
F.
Demami
,
Semicond. Sci. Technol.
28
(
2
),
025002
(
2013
).
39.
M. A.
Rafiq
,
Z. A. K.
Durrani
,
H.
Mizuta
,
M. M.
Hassan
, and
S.
Oda
,
J. Appl. Phys.
104
(
12
),
123710
(
2008
).
40.
B. T.
Phan
,
T.
Choi
,
A.
Romanenko
, and
J.
Lee
,
Solid-State Electron.
75
,
43
47
(
2012
).
You do not currently have access to this content.