Surface acoustic wave (SAW) devices based on thin films of ZnO are a well established technology. However, SAW devices on bulk ZnO crystals are not practical at room temperature due to the significant damping caused by finite electrical conductivity of the crystal. Here, by operating at low temperatures, we demonstrate effective SAW devices on the (0001) surface of bulk ZnO crystals, including a delay line operating at SAW wavelengths of λ = 4 and 6 μm and a one-port resonator at a wavelength of λ = 1.6 μm. We find that the SAW velocity is temperature dependent, reaching v ≃ 2.68 km/s at 10 mK. Our resonator reaches a maximum quality factor of Qi ≃ 1.5 × 105, demonstrating that bulk ZnO is highly viable for low temperature SAW applications. The performance of the devices is strongly correlated with the bulk conductivity, which quenches SAW transmission above 200 K.

1.
D.
Morgan
,
Surface Acoustic Wave Filters: With Applications to Electronic Communications and Signal Processing
, Studies in Electrical and Electronic Engineering, 2nd ed. (
Academic Press
,
2007
).
2.
K.
Länge
,
B.
Rapp
, and
M.
Rapp
, “
Surface acoustic wave biosensors: A review
,”
Anal. Bioanal. Chem.
391
,
1509
1519
(
2008
).
3.
R. M.
White
and
F. W.
Voltmer
, “
Direct piezoelectric coupling to surface elastic waves
,”
Appl. Phys. Lett.
7
,
314
(
1965
).
4.
H.
Nakahata
,
S.
Fujii
,
K.
Higaki
,
A.
Hachigo
,
H.
Kitabayashi
,
S.
Shikata
, and
N.
Fujimori
, “
Diamond-based surface acoustic wave devices
,”
Semicond. Sci. Technol.
18
,
S96
S104
(
2003
).
5.
C.-M.
Lin
,
T.-T.
Wu
,
Y.-Y.
Chen
, and
T.-T.
Chou
, “
Improved frequency responses of SAW filters with interdigitated interdigital transducers on ZnO/Diamond/Si layered structure
,”
J. Mech.
23
,
253
(
2007
).
6.
D. L. T.
Bell
, Jr.
and
R. C. M.
Li
, “
Surface-acoustic-wave resonators
,”
Proc. IEEE
64
,
711
721
(
1976
).
7.
A.
Weber
,
G.
Weiss
, and
S.
Hunklinger
, “
Comparison of Rayleigh and Sezawa wave modes in ZnO-SiO_2-Si structures
,” in
IEEE 1991 Ultrasonics Symposium
(
IEEE
,
1991
), pp.
363
366
.
8.
D.
Look
,
D.
Reynolds
,
J.
Sizelove
,
R.
Jones
,
C.
Litton
,
G.
Cantwell
, and
W.
Harsch
, “
Electrical properties of bulk ZnO
,”
Solid State Commun.
105
,
399
401
(
1998
).
9.
D.
Look
, “
Recent advances in ZnO materials and devices
,”
Mater. Sci. Eng. B
80
,
383
387
(
2001
).
10.
V.
Avrutin
,
G.
Cantwell
,
J. J.
Song
,
D. J.
Silversmith
, and
H.
Morkoç
, “
Bulk ZnO: Current status, challenges, and prospects
,”
Proc. IEEE
98
,
1339
1350
(
2010
).
11.
Zinc Oxide Bulk, Thin Films and Nanostructures
, 1st ed., edited by
C.
Jagadish
and
S.
Pearton
(
Elsevier
,
Oxford
,
2006
).
12.
U.
Ozgur
,
Y. I.
Alivov
,
C.
Liu
,
A.
Teke
,
M. A.
Reshchikov
,
S.
Dogan
,
V.
Avrutin
,
S.-J.
Cho
, and
H.
Morkoc
, “
A comprehensive review of ZnO materials and devices
,”
J. Appl. Phys.
98
,
041301
(
2005
).
13.
R. E.
George
,
J. P.
Edwards
, and
A.
Ardavan
, “
Coherent spin control by electrical manipulation of the magnetic anisotropy
,”
Phys. Rev. Lett.
110
,
027601
(
2013
).
14.
See http://mtixtl.com for we studied nominally pure single crystal samples obtained commercially from the MTI Corporation.
15.
R.
Manenti
, “
Surface acoustic waves for quantum information
,” Master thesis (
University of Milan
,
2014
).
16.
A.
Megrant
,
C.
Neill
,
R.
Barends
,
B.
Chiaro
,
Y.
Chen
,
L.
Feigl
,
J.
Kelly
,
E.
Lucero
,
M.
Mariantoni
,
P. J. J.
OMalley
,
D.
Sank
,
A.
Vainsencher
,
J.
Wenner
,
T. C.
White
,
Y.
Yin
,
J.
Zhao
,
C. J.
Palmstrom
,
J. M.
Martinis
, and
A. N.
Cleland
, “
Planar superconducting resonators with internal quality factors above one million
,”
Appl. Phys. Lett.
100
,
113510
(
2012
).
17.
A.
El Habti
, “
High-frequency surface acoustic wave devices at very low temperature: Application to loss mechanisms evaluation
,”
J. Acoust. Soc. Am.
100
,
272
(
1996
).
18.
M. V.
Gustafsson
,
P. V.
Santos
,
G.
Johansson
, and
P.
Delsing
, “
Local probing of propagating acoustic waves in a gigahertz echo chamber
,”
Nat. Phys.
8
,
338
343
(
2012
).
19.
M. V.
Gustafsson
,
T.
Aref
,
A. F.
Kockum
,
M. K.
Ekström
,
G.
Johansson
, and
P.
Delsing
, “
Propagating phonons coupled to an artificial atom
,”
Science
346
,
207
211
(
2014
).
You do not currently have access to this content.