Negative thermal expansion (NTE) of BiNi1−xFexO3 is investigated. All x = 0.05, 0.075, 0.10, and 0.15 samples shows large NTE with the coefficient of linear thermal expansion (CTE) αL exceeding −150 ppm K−1 induced by charge transfer between Bi5+ and Ni2+ in the controlled temperature range near room temperature. Compared with Bi1−xLnxNiO3 (Ln: rare-earth elements), the thermal hysteresis that causes a problem for practical application is suppressed because random distribution of Fe in the Ni site changes the first order transition to second order-like transition. The CTE of BiNi0.85Fe0.15O3 reaches −187 ppm K−1 and it is demonstrated that 18 vol. % addition of the present compound compensates for the thermal expansion of epoxy resin.

1.
G. D.
Barrera
,
J. A. O.
Bruno
,
T. H. K.
Barron
, and
N. L.
Allan
,
J. Phys.: Condens. Matter.
17
,
R217
(
2005
).
2.
K.
Takenaka
,
Sci. Technol. Adv. Mater.
13
,
013001
(
2012
).
3.
C. N.
Chu
,
N.
Saka
, and
N. P.
Suh
,
Mater. Sci. Eng.
95
,
303
(
1987
).
4.
A. W.
Sleight
,
Inorg. Chem.
37
,
2854
(
1998
).
5.
T. A.
Mary
,
J. S. O.
Evans
,
T.
Vogt
, and
A. W.
Sleight
,
Science
272
,
90
(
1996
).
6.
A. E.
Phillips
,
A. L.
Goodwin
,
G. J.
Halder
,
P. D.
Southon
, and
C. J.
Kepert
,
Angew. Chem. Int. Ed.
47
,
1396
(
2008
).
7.
K.
Takenaka
and
H.
Takagi
,
Appl. Phys. Lett.
87
,
261902
(
2005
).
8.
K.
Takenaka
,
T.
Hamada
,
D.
Kasugai
, and
N.
Sugimoto
,
J. Appl. Phys.
112
,
083517
(
2012
).
9.
J.
Chen
,
K.
Nittala
,
J. S.
Forrester
,
J. L.
Jones
,
J. X.
Deng
,
R. B.
Yu
, and
X. R.
Xing
,
J. Am. Chem. Soc.
133
,
11114
(
2011
).
10.
J.
Chen
,
L. L.
Fan
,
Y.
Ren
,
Z.
Pan
,
J. X.
Deng
,
R. B.
Yu
, and
X. R.
Xing
,
Phys. Rev. Lett.
110
,
115901
(
2013
).
11.
Y. W.
Long
,
N.
Hayashi
,
T.
Saito
,
M.
Azuma
,
S.
Muranaka
, and
Y.
Shimakawa
,
Nature
458
,
60
(
2009
).
12.
I.
Yamada
,
K.
Tsuchida
,
K.
Ohgushi
,
N.
Hayashi
,
J.
Kim
,
N.
Tsuji
,
R.
Takahashi
,
M.
Matsushita
,
N.
Nishiyama
,
T.
Inoue
,
T.
Irifune
,
K.
Kato
,
M.
Takata
, and
M.
Takano
,
Angew. Chem. Int. Ed.
50
,
6579
(
2011
).
13.
M.
Azuma
,
W. T.
Chen
,
H.
Seki
,
M.
Czapski
,
S.
Olga
,
K.
Oka
,
M.
Mizumaki
,
T.
Watanuki
,
N.
Ishimatsu
,
N.
Kawamura
,
S.
Ishiwata
,
M. G.
Tucker
,
Y.
Shimakawa
, and
J. P.
Attfield
,
Nat. Commun.
2
,
347
(
2011
).
14.
K.
Oka
,
K.
Nabetani
,
C.
Sakaguchi
,
H.
Seki
,
M.
Czapski
,
Y.
Shimakawa
, and
M.
Azuma
,
Appl. Phys. Lett.
103
,
061909
(
2013
).
15.
S.
Ishiwata
,
M.
Azuma
,
M.
Takano
,
E.
Nishibori
,
M.
Takata
,
M.
Sakata
, and
K.
Kato
,
J. Mater. Chem.
12
,
3733
(
2002
).
16.
K.
Oka
,
M.
Mizumaki
,
C.
Sakaguchi
,
A.
Sinclair
,
C.
Ritter
,
J. P.
Attfield
, and
M.
Azuma
,
Phys. Rev. B
88
,
014112
(
2013
).
17.
A. A.
Bokov
and
Z.-G.
Ye
,
J. Mater. Sci.
41
,
31
(
2006
).
18.
E.
Nishibori
,
M.
Takata
,
K.
Kato
,
M.
Sakata
,
Y.
Kubota
,
S.
Aoyagi
,
Y.
Kuroiwa
,
M.
Yamakata
, and
N.
IKeda
,
Nucl. Instrum. Methods Phys. Res., Sect. A
467–468
,
1045
(
2001
).
19.
F.
Izumi
and
K.
Momma
,
Solid State Phenom.
130
,
15
(
2007
).
20.
Y.
Higo
,
Y.
Kono
,
T.
Inoue
,
T.
Irifune
, and
K.
Funakoshi
,
J. Synchrotron Radiat.
16
,
762
(
2009
).
21.
See supplementary material at http://dx.doi.org/10.1063/1.4908258 for refined lattice parameters, crystallographic parameters, and bond valence sums.
22.
M.
Medarde
,
A.
Fontaine
,
J. L.
Garcia-Munoz
,
J.
Rodriguez-Carvajal
,
M.
de Santis
,
M.
Sacchi
,
G.
Rossi
, and
P.
Lacorre
,
Phys. Rev. B
46
,
14975
(
1992
).
23.
N. N.
Greenwood
and
T. C.
Gibb
, Mössbauer spectroscopy (
Chapman and Hall Ltd.
,
London
,
1971
), p.
90
.
24.
P. S.
Turner
,
J. Res. Nat. Bur. Stand.
37
,
239
(
1946
).
25.
K.
Takenaka
and
M.
Ichigo
,
Compos. Sci. Technol.
104
,
47
(
2014
).

Supplementary Material

You do not currently have access to this content.