Understanding of the electrostatic properties of carbon nanotube (CNT) forests is essential to enable their integration in microelectronic and micromechanical devices. In this study, we sought to understand how the hierarchical geometry and morphology of CNT forests determines their capacitance. First, we find that at small gaps, solid micropillars have greater capacitance, yet at larger gaps the capacitance of the CNT forests is greater. The surface area of the CNT forest accessible to the electrostatic field was extracted by analysis of the measured capacitance, and, by relating the capacitance to the average density of CNTs in the forest, we find that the penetration depth of the electrostatic field is on the order of several microns. Therefore, CNT forests can behave as a miniature Faraday cage. The unique electrostatic properties of CNT forests could therefore enable their use as long-range proximity sensors and as shielding elements for miniature electronic devices.

1.
S. B.
Hutchens
,
L. J.
Hall
, and
J. R.
Greer
, “
In situ mechanical testing reveals periodic buckle nucleation and propagation in carbon nanotube bundles
,”
Adv. Funct. Mater.
20
(
14
),
2338
2346
(
2010
).
2.
J.
Xu
and
T. S.
Fisher
, “
Enhancement of thermal interface materials with carbon nanotube arrays
,”
Int. J. Heat Mass Transfer
49
(
9
),
1658
1666
(
2006
).
3.
D. N.
Futaba
,
K.
Hata
,
T.
Yamada
,
T.
Hiraoka
,
Y.
Hayamizu
,
Y.
Kakudate
,
O.
Tanaike
,
H.
Hatori
,
M.
Yumura
, and
S.
Iijima
, “
Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes
,”
Nat. Mater.
5
(
12
),
987
994
(
2006
).
4.
J.
Choi
,
J. I.
Lee
,
Y.
Eun
,
M.-O.
Kim
, and
J.
Kim
, “
Aligned carbon nanotube arrays for degradation-resistant, intimate contact in micromechanical devices
,”
Adv. Mater.
23
(
19
),
2231
2236
(
2011
).
5.
G. A.
Karp
,
A.
Ya'akobovitz
,
M.
David-Pur
,
Z.
Ioffe
,
O.
Cheshnovsky
,
S.
Krylov
, and
Y.
Hanein
, “
Integration of suspended carbon nanotubes into micro-fabricated devices
,”
J. Micromech. Microeng.
19
(
8
),
085021
(
2009
).
6.
C.
Stampfer
,
T.
Helbling
,
D.
Obergfell
,
B.
Schöberle
,
M. K.
Tripp
,
A.
Jungen
,
S.
Roth
,
V. M.
Bright
, and
C.
Hierold
, “
Fabrication of single-walled carbon-nanotube-based pressure sensors
,”
Nano Lett.
6
(
2
),
233
237
(
2006
).
7.
N.-K.
Chang
,
C.-C.
Su
, and
S.-H.
Chang
, “
Fabrication of single-walled carbon nanotube flexible strain sensors with high sensitivity
,”
Appl. Phys. Lett.
92
(
6
),
063501
(
2008
).
8.
Z. F.
Ren
,
Z. P.
Huang
,
J. W.
Xu
,
J. H.
Wang
,
P.
Bush
,
M. P.
Siegal
, and
P. N.
Provencio
, “
Synthesis of large arrays of well-aligned carbon nanotubes on glass
,”
Science
282
(
5391
),
1105
1107
(
1998
).
9.
Q.
Zhou
,
K.
Liu
,
S.
Xiong
,
F.
Wang
, and
L.
Lin
, “
Direct synthesis of self-aligned single-walled carbon nanotubes on paper
,”
Carbon
50
(
3
),
1179
1185
(
2012
).
10.
J. H.
Bak
,
Y. D.
Kim
,
S. S.
Hong
,
B. Y.
Lee
,
S. R.
Lee
,
J. H.
Jang
,
M.
Kim
,
K.
Char
,
S.
Hong
, and
Y. D.
Park
, “
High-frequency micromechanical resonators from aluminium–carbon nanotube nanolaminates
,”
Nat. Mater.
7
(
6
),
459
463
(
2008
).
11.
D. N.
Hutchison
,
N. B.
Morrill
,
Q.
Aten
,
B. W.
Turner
,
B. D.
Jensen
,
L. L.
Howell
,
R. R.
Vanfleet
, and
R. C.
Davis
, “
Carbon nanotubes as a framework for high-aspect-ratio MEMS fabrication
,”
J. Microelectromech. Syst.
19
(
1
),
75
82
(
2010
).
12.
N.
Koratkar
,
B. Q.
Wei
, and
P. M.
Ajayan
, “
Carbon nanotube films for damping applications
,”
Adv. Mater.
14
(
13-14
),
997
1000
(
2002
).
13.
Y.
Eun
,
J.-I.
Lee
,
J.
Choi
,
Y.
Song
, and
J.
Kim
, “
Integrated carbon nanotube array as dry adhesive for high-temperature silicon processing
,”
Adv. Mater.
23
(
37
),
4285
4289
(
2011
).
14.
J.
Choi
,
Y.
Eun
,
S.
Pyo
,
J.
Sim
, and
J.
Kim
, “
Vertically aligned carbon nanotube arrays as vertical comb structures for electrostatic torsional actuator
,”
Microelectron. Eng.
98
,
405
408
(
2012
).
15.
J.
Lin
,
C.
Zhang
,
Z.
Yan
,
Y.
Zhu
,
Z.
Peng
,
R. H.
Hauge
,
D.
Natelson
, and
J. M.
Tour
, “
3-dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance
,”
Nano Lett.
13
,
72
78
(
2012
).
16.
N.
Olofsson
,
J.
Ek-Weis
,
A.
Eriksson
,
T.
Idda
, and
E. E. B.
Campbell
, “
Determination of the effective young's modulus of vertically aligned carbon nanotube arrays: A simple nanotube-based varactor
,”
Nanotechnology
20
(
38
),
385710
(
2009
).
17.
M.
Bedewy
,
E. R.
Meshot
,
M. J.
Reinker
, and
A. J.
Hart
, “
Population growth dynamics of carbon nanotubes
,”
ACS Nano
5
(
11
),
8974
8989
(
2011
).
18.
S.
Pathak
,
N.
Mohan
,
E.
Decolvenaere
,
A.
Needleman
,
M.
Bedewy
,
A. J.
Hart
, and
J. R.
Greer
, “
Local relative density modulates failure and strength in vertically aligned carbon nanotubes
,”
ACS Nano
7
(
10
),
8593
8604
(
2013
).
19.
A.
Ya'akobovitz
and
A. J.
Hart
, “
Enhanced surface capacitance of cylindrical micropillar arrays
,”
Sens. Actuators, A
219
,
32
37
(
2014
).
20.
S. J.
Park
,
A. J.
Schmidt
,
M.
Bedewy
, and
A. J.
Hart
, “
Measurement of carbon nanotube microstructure relative density by optical attenuation and observation of size-dependent variations
,”
Phys. Chem. Chem. Phys.
15
(
27
),
11511
11519
(
2013
).
21.
H.-K.
Lee
,
S. I.
Chang
, and
E.
Yoon
, “
Dual-mode capacitive proximity sensor for robot application: Implementation of tactile and proximity sensing capability on a single polymer platform using shared electrodes
,”
IEEE J. Sens.
9
(
12
),
1748
1755
(
2009
).
You do not currently have access to this content.