We propose and demonstrate a nanoscale vacuum-tube diode triggered by few-cycle near-infrared laser pulses. It represents an ultrafast electronic device based on light fields, exploiting near-field optical enhancement at surfaces of two metal nanotips. The sharper of the two tips displays a stronger field-enhancement, resulting in larger photoemission yields at its surface. One laser pulse with a peak intensity of 4.7 × 1011 W/cm2 triggers photoemission of ∼16 electrons from the sharper cathode tip, while emission from the blunter anode tip is suppressed by 19 dB to ∼0.2 electrons per pulse. Thus, the laser-triggered current between two tips exhibit a rectifying behavior, in analogy to classical vacuum-tube diodes. According to the kinetic energy of the emitted electrons and the distance between the tips, the total operation time of this laser-triggered nanoscale diode is estimated to be below 1 ps.

1.
F.
Krausz
and
M. I.
Stockman
,
Nat. Photon.
8
,
205
(
2014
).
2.
A.
Schiffrin
,
T.
Paasch-Colberg
,
N.
Karpowicz
,
V.
Apalkov
,
D.
Gerster
,
S.
Muhlbrandt
,
M.
Korbman
,
J.
Reichert
,
M.
Schultze
,
S.
Holzner
,
J. V.
Barth
,
R.
Kienberger
,
R.
Ernstorfer
,
V. S.
Yakovlev
,
M. I.
Stockman
, and
F.
Krausz
,
Nature
493
,
70
(
2013
).
3.
S.
Ghimire
,
A. D.
DiChiara
,
E.
Sistrunk
,
P.
Agostini
,
L. F.
DiMauro
, and
D. A.
Reis
,
Nat. Phys.
7
,
138
(
2011
).
4.
M.
Ivanov
and
O.
Smirnova
,
Chem. Phys.
414
,
3
(
2013
).
5.
B. J.
Siwick
,
J. R.
Dwyer
,
R. E.
Jordan
, and
R. J. D.
Miller
,
Science
302
,
1382
(
2003
).
6.
R. J. D.
Miller
,
Science
343
,
1108
(
2014
).
7.
P.
Baum
,
D.-S.
Yang
, and
A. H.
Zewail
,
Science
318
,
788
(
2007
).
8.
D.-S.
Yang
,
O. F.
Mohammed
, and
A. H.
Zewail
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
14993
(
2010
).
9.
H. J.
Reich
,
Principles of Electron Tubes
(
McGraw-Hill
,
New York
,
1941
).
10.
L.
Novotny
and
B.
Hecht
,
Principles of Nano-Optics
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
2012
).
11.
B.
Hecht
,
B.
Sick
,
U. P.
Wild
,
V.
Deckert
,
R.
Zenobi
,
O. J. F.
Martin
, and
D. W.
Pohl
,
J. Chem. Phys.
112
,
7761
(
2000
).
12.
R. M.
Stöckle
,
Y. D.
Suh
,
V.
Deckert
, and
R.
Zenobi
,
Chem. Phys. Lett.
318
,
131
(
2000
).
13.
M.
Schenk
,
M.
Krüger
, and
P.
Hommelhoff
,
Phys. Rev. Lett.
105
,
257601
(
2010
).
14.
M.
Krüger
,
M.
Schenk
, and
P.
Hommelhoff
,
Nature
475
,
78
(
2011
).
15.
H.
Yanagisawa
,
C.
Hafner
,
P.
Doná
,
M.
Klöckner
,
D.
Leuenberger
,
T.
Greber
,
M.
Hengsberger
, and
J.
Osterwalder
,
Phys. Rev. Lett.
103
,
257603
(
2009
).
16.
G.
Herink
,
D. R.
Solli
,
M.
Gulde
, and
C.
Ropers
,
Nature
483
,
190
(
2012
).
17.
L.
Wimmer
,
G.
Herink
,
D. R.
Solli
,
S. V.
Yalunin
,
K. E.
Echternkamp
, and
C.
Ropers
,
Nat. Phys.
10
,
432
(
2014
).
18.
J.
Hoffrogge
,
J.
Paul Stein
,
M.
Krüger
,
M.
Förster
,
J.
Hammer
,
D.
Ehberger
,
P.
Baum
, and
P.
Hommelhoff
,
J. Appl. Phys.
115
,
094506
(
2014
).
19.
S.
Thomas
,
M.
Krüger
,
M.
Förster
,
M.
Schenk
, and
P.
Hommelhoff
,
Nano Lett.
13
,
4790
(
2013
).
20.
E. W.
Müller
and
K.
Bahadur
,
Phys. Rev.
102
,
624
(
1956
).
21.
T. T.
Tsong
,
Atom-Probe Field Ion Microscopy
(
Cambridge University Press
,
Cambridge
,
1990
).
22.
R. H.
Fowler
and
L.
Nordheim
,
Proc. R. Soc. London, Ser. A
119
,
173
(
1928
).
23.
H.
Kawano
,
Prog. Surf. Sci.
83
,
1
(
2008
).
24.
K. J.
Savage
,
M. M.
Hawkeye
,
R.
Esteban
,
A. G.
Borisov
,
J.
Aizpurua
, and
J. J.
Baumberg
,
Nature
491
,
574
(
2012
).
You do not currently have access to this content.