We investigate a frequency comb source based on a mid-infrared quantum cascade laser at λ ∼ 9 μm with high power output. A broad flat-top gain with near-zero group velocity dispersion has been engineered using a dual-core active region structure. This favors the locking of the dispersed Fabry-Pérot modes into equally spaced frequency lines via four wave mixing. A current range with a narrow intermode beating linewidth of 3 kHz is identified with a fast detector and spectrum analyzer. This range corresponds to a broad spectral coverage of 65 cm−1 and a high power output of 180 mW for ∼176 comb modes.

1.
T.
Udem
,
R.
Holzwarth
, and
T. W.
Hänsch
, “
Optical frequency metrology
,”
Nature
416
,
233
237
(
2002
).
2.
A.
Schliesser
,
N.
Picqué
, and
T. W.
Hänsch
, “
Mid-infrared frequency combs
,”
Nat. Photonics
6
,
440
(
2002
).
3.
C.
Fischer
and
M. W.
Sigrist
, “
Mid-IR difference frequency generation
,”
Top. Appl. Phys.
89
,
99
143
(
2003
).
4.
A.
Ruehl
,
A.
Gambetta
,
I.
Hartl
,
M. E.
Fermann
,
K. S. E.
Eikema
, and
M.
Marangoni
, “
Widely-tunable mid-IR frequency comb source based on difference frequency generation
,”
Opt. Lett.
37
,
2232
2234
(
2012
).
5.
D. T.
Reid
,
B. J. S.
Gale
, and
J.
Sun
, “
Frequency comb generation and carrier–envelope phase control in femtosecond optical parametric oscillators
,”
Laser Phys.
18
,
87
103
(
2008
).
6.
P.
Del'Haye
,
A.
Schliesser
,
O.
Arcizet
,
T.
Wilken
,
R.
Holzwarth
, and
T. J.
Kippenberg
, “
Optical frequency comb generation from a monolithic microresonator
,”
Nature
450
,
1214
1217
(
2007
).
7.
M.
Razeghi
, “
High-performance InP-based mid-IR quantum cascade lasers
,”
IEEE J. Sel. Top. Quantum Electron.
15
,
941
951
(
2009
).
8.
C. Y.
Wang
,
L.
Kuznetsova
,
V. M.
Gkortsas
,
L.
Diehl
,
F. X.
Kärtner
,
M. A.
Belkin
,
A.
Belyanin
,
X.
Li
,
D.
Ham
,
H.
Schneider
,
P.
Grant
,
C. Y.
Song
,
S.
Haffouz
,
Z. R.
Wasilewski
,
H. C.
Liu
, and
F.
Capasso
, “
Mode-locked pulses from mid-infrared quantum cascade lasers
,”
Opt. Express
17
,
12929
12943
(
2009
).
9.
S.
Barbieri
,
M.
Ravaro
,
P.
Gellie
,
G.
Santarelli
,
C.
Manquest
,
C.
Sirtori
,
S. P.
Khanna
,
H.
Linfield
, and
A. G.
Davies
, “
Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis
,”
Nat. Photonics
5
,
306
313
(
2011
).
10.
A.
Hugi
,
G.
Villares
,
S.
Blaser
,
H. C.
Liu
, and
J.
Faist
, “
Mid-infrared frequency comb based on a quantum cascade laser
,”
Nature
492
,
229
(
2012
).
11.
G.
Villares
,
A.
Hugi
,
S.
Blaser
, and
J.
Faist
, “
Dual-comb spectroscopy based on quantum-cascade-laser frequency combs
,”
Nat. Commun.
5
,
5192
(
2014
).
12.
Q. Y.
Lu
,
N.
Bandyopadhyay
,
S.
Slivken
,
Y.
Bai
, and
M.
Razeghi
, “
Continuous operation of a monolithic semiconductor terahertz source at room temperature
,”
Appl. Phys. Lett.
104
,
221105
(
2014
).
13.
C.
Sirtori
,
F.
Capasso
,
D. L.
Sivco
, and
A. Y.
Cho
, “
Giant, triply resonant, third-order nonlinear susceptibility χ(3) in coupled quantum wells
,”
Phys. Rev. Lett.
68
,
1010
(
1992
).
14.
Q. Y.
Lu
,
N.
Bandyopadhyay
,
S.
Slivken
,
Y.
Bai
, and
M.
Razeghi
, “
Room temperature terahertz quantum cascade laser sources with 215 μW output power through epilayer-down mounting
,”
Appl. Phys. Lett.
103
,
011101
(
2013
).
15.
P.
Friedli
,
H.
Sigg
,
B.
Hinkov
,
A.
Hugi
,
S.
Riedi
,
M.
Beck
, and
J.
Faist
, “
Four-wave mixing in a quantum cascade laser amplifier
,”
Appl. Phys. Lett.
102
,
222104
(
2013
).
16.
G. P.
Agrawal
, “
Highly nondegenerate four-wave mixing in semiconductor lasers due to spectral hole burning
,”
Appl. Phys. Lett.
51
,
302
(
1987
).
17.
F. X.
Kärtner
,
U.
Morgner
,
R.
Ell
,
T.
Schibli
,
J. G.
Fujimoto
,
E. P.
Ippen
,
V.
Scheuer
,
G.
Angelow
, and
T.
Tschudi
, “
Ultrabroadband double-chirped mirror pairs for generation of octave spectra
,”
J. Opt. Soc. Am. B
18
,
882
885
(
2001
).
18.
D.
Burghoff
,
T.-Y.
Kao
,
N.
Han
,
C. W. I.
Chan
,
X.
Cai
,
Y.
Yang
,
D. J.
Hayton
,
J.-R.
Gao
,
J. L.
Reno
, and
Q.
Hu
, “
Terahertz laser frequency combs
,”
Nat. Photonics
8
,
462
467
(
2014
).
You do not currently have access to this content.