Electronic properties of fullerene derivatives containing oligothiophene pendant chain (1–3 thiophene moieties) were investigated using the Kelvin probe technique and quantum chemistry methods. For electrochemical examination of these systems, Langmuir–Blodgett (LB) layers were prepared by the deposition on a gold substrate. The analysis of the experimental data shows that the value of the work function depends strongly on the length of oligothiophene chain. Similar dependence was also found for the surface photovoltage measurements conducted for the layers consisting of multiple LB films of the examined compounds deposited on gold surfaces. The assumption has been made that these changes are associated with the influence of oligothiophene chain on the electrostatic potential distribution near the surface of the sample. The hypothesis was confirmed by the results of DFT calculations, which revealed that the value of Fermi level energy shifts in the opposite direction to the determined work function. The key highlights of this study are as follows: electronic structure tuning by oligothiophene side chain; DFT calculation on fullerene-thiophene system; work function measurements of thin molecular layers.

1.
D.
Holten
,
D. F.
Bocian
, and
J. S.
Lindsey
,
Acc. Chem. Res.
35
(
1
),
57
69
(
2002
).
2.
H.
Imahori
,
Y.
Mori
, and
Y.
Matano
,
J. Photochem. Photobiol., C
4
,
51
83
(
2003
).
3.
S. A.
Jenekhe
,
L.
Lu
, and
M. M.
Alam
,
Macromolecules
34
,
7315
7324
(
2001
).
4.
S.-T.
Kim
,
S. Y.
Cho
,
C.
Lee
,
N. S.
Baek
,
K.-S.
Lee
, and
T.-D.
Kim
,
Thin Solid Films
519
(
2
),
690
693
(
2010
).
5.
S.
Samal
and
K. E.
Geckeler
,
Chem. Commun.
2000
(
13
),
1101
1102
.
6.
N.
Stingelin-Stutzmann
,
E.
Smits
,
H.
Wondergem
,
C.
Tanse
,
P.
Blom
,
P.
Smith
, and
D.
de Leeuw
,
Nat. Mater.
4
,
601
606
(
2005
).
7.
G.
Yu
,
J.
Gao
,
J. C.
Hummelen
,
F.
Wuld
, and
A. J.
Heeger
,
Science
270
,
1789
1791
(
1995
).
8.
O. B.
O'Regan
and
M.
Graetzel
,
Nature
353
,
737
740
(
1991
).
9.
A. M.
Cassell
,
W. A.
Scrivens
, and
J. M.
Tour
,
Angew. Chem., Int. Ed.
37
(
11
),
1528
1531
(
1998
).
10.
D. I.
Schuster
,
P.
Cheng
,
P. D.
Jarowski
,
D. M.
Guldi
,
C.
Luo
,
L.
Echegoyen
,
S.
Pyo
,
A. R.
Holzwarth
,
S. E.
Braslavsky
,
R. M.
Williams
, and
G.
Klihm
,
J. Am. Chem. Soc.
126
(
23
),
7257
7270
(
2004
).
11.
D.
Bonifazi
and
F.
Diederich
,
Chem. Commun.
2002
,
2178
2179
.
12.
C.
Foote
, in
Electron Transfer I
, edited by
J.
Mattay
(
Springer Berlin
,
Heidelberg
,
1994
), Vol.
169
, pp.
347
363
.
13.
M. S.
Dresselhaus
,
G.
Dresselhaus
, and
P. C.
Eklund
,
Science of Fullerenes and Carbon Nanotubes
(
Academic Press
,
New York
,
1996
).
14.
F.
Diederich
and
M.
Gomez-Lopez
,
Chem. Soc. Rev.
28
,
263
277
(
1999
).
15.
D. M.
Guldi
,
Chem. Soc. Rev.
31
,
22
36
(
2002
).
16.
D. M.
Guldi
and
M.
Prato
,
Acc. Chem. Res.
33
(
10
),
695
703
(
2000
).
17.
H.
Imahori
and
Y.
Sakata
,
Adv. Mater.
9
(
7
),
537
546
(
1997
).
18.
J. L.
Delgado
,
P.
de la Cruz
,
V.
López-Arza
,
F.
Langa
,
D. B.
Kimball
,
M. M.
Haley
,
Y.
Araki
, and
O.
Ito
,
J. Org. Chem.
69
,
2661
2668
(
2004
).
19.
H.
Imahori
,
K.
Hagiwara
,
T.
Akiyama
,
M.
Akoi
,
S.
Taniguchi
,
T.
Okada
,
M.
Shirakawa
, and
Y.
Sakata
,
Chem. Phys. Lett.
263
(
3–4
),
545
550
(
1996
).
20.
T.
Nakamura
,
M.
Fujitsuka
,
Y.
Araki
,
O.
Ito
,
I.
Ikemoto
,
K.
Takimiya
,
Y.
Aso
, and
T.
Otsubo
,
J. Phys. Chem. B
108
(
30
),
10700
10710
(
2004
).
21.
Y. C.
Chang
and
I.
Chao
,
J. Phys. Chem. Lett.
1
,
116
121
(
2010
).
22.
P.
Kwolek
,
M.
Oszajca
, and
K.
Szaciłowski
,
Coord. Chem. Rev.
256
,
1706
1731
(
2012
).
23.
J.
Hou
,
H.-Y.
Chen
,
S.
Zhang
,
G.
Li
, and
Y.
Yang
,
J. Am. Chem. Soc.
130
(
48
),
16144
16145
(
2008
).
24.
E.
Mishina
,
T.
Tamura
,
H.
Sakaguchi
,
L.
Kulyuk
, and
S.
Nakabayashi
,
J. Chem. Phys.
120
,
9763
(
2004
).
25.
A. J.
Moule
,
A.
Tsami
,
T.
Bunnagel
,
M.
Forster
,
N.
Kronenberg
,
M.
Scharber
,
M.
Koppe
,
M.
Morana
,
C.
Brabec
,
K.
Meerholz
, and
U.
Scherf
,
Chem. Mater.
20
(
12
),
4045
4050
(
2008
).
26.
P. A.
van Hal
,
J.
Knol
,
B. M. W.
Langeveld-Voss
,
S. C. J.
Meskers
,
J. C.
Hummelen
, and
R. A. J.
Janssen
,
J. Phys. Chem. A
104
(
25
),
5974
5988
(
2004
).
27.
W. J. D.
Beenken
,
Chem. Phys.
357
,
144
150
(
2009
).
28.
W. J. D.
Beenken
and
T.
Pullerits
,
J. Phys. Chem. B
108
(
20
),
6164
6169
(
2004
).
29.
J.
Casado
,
T. M.
Pappenfus
,
K. R.
Mann
,
B.
Milián
,
E.
Ortı́
,
P. M.
Viruela
,
M. C.
Ruiz Delgado
,
V.
Hernández
, and
J. T.
López Navarrete
,
J. Mol. Struct.
651–653
(
0
),
665
673
(
2003
).
30.
R. E.
Martin
and
F.
Diederich
,
Angew. Chem., Int. Ed.
38
(
10
),
1350
1377
(
1999
).
31.
J. M.
Tour
,
Chem. Rev.
96
(
1
),
537
554
(
1996
).
32.
A. J.
Heeger
,
S.
Kivelson
,
J. R.
Schriefer
, and
W. P.
Su
,
Rev. Mod. Phys.
60
,
781
850
(
1988
).
33.
M. R.
Philpott
and
Y.
Kawazoe
,
J. Chem. Phys.
131
,
214706
(
2009
).
34.
J.
Roncali
,
Chem. Rev.
92
(
4
),
711
738
(
1992
).
35.
G.
Schopf
and
G.
Kossmehl
,
Advances in Polymer Sciences
(
Springer
,
1997
), Vol.
129
.
36.
R. H.
Friend
,
R. W.
Gymer
,
A. B.
Holmes
,
J. H.
Burroughes
,
R. N.
Marks
,
C.
Taliani
,
D. D. C.
Bradley
,
D. A. D.
Santos
,
J. L.
Bredas
,
M.
Logdlund
, and
W. R.
Salaneck
,
Nature
397
(
6715
),
121
128
(
1999
).
37.
N. S.
Sariciftci
,
Prog. Quantum Electron.
19
(
2
),
131
159
(
1995
).
38.
Y.
Shirota
,
J. Mater. Chem.
10
,
1
25
(
2000
).
39.
D.
Woehrle
and
D.
Meissner
,
Adv. Mater.
3
(
3
),
129
138
(
1991
).
40.
M. A.
Pope
and
C. E.
Swenberg
,
Electronic Processes in Organic Crystals Polymers
, 2nd ed. (
Oxford University Press
,
New York
,
1999
).
41.
S.
Braun
,
W. R.
Salaneck
, and
M.
Fahlman
,
Adv. Mater.
21
,
1450
1472
(
2009
).
42.
G.
Dennler
,
M. C.
Scharber
, and
C. J.
Brabec
,
Adv. Mater.
21
,
1323
1338
(
2009
).
43.
M. G.
Helander
,
Z. B.
Wang
, and
Z. H.
Lu
,
Proc. SPIE
7051
,
70510Z
(
2008
).
44.
J. F.
Janak
,
Phys. Rev. B
18
,
7165
7168
(
1978
).
45.
M.
Pfeiffer
,
K.
Leo
, and
N.
Karl
,
J. Appl. Phys.
80
,
6880
6883
(
1996
).
46.
H.
Ishii
,
N.
Hayashi
,
E.
Ito
,
Y.
Washizu
,
K.
Sugi
,
Y.
Kimura
,
M.
Niwano
,
Y.
Ouchi
, and
K.
Seki
,
Phys. Status. Solidi A
201
(
6
),
1075
1094
(
2004
).
47.
U.
Zerweck
,
C.
Loppacher
,
T.
Otto
,
S.
Grafstrom
, and
L. M.
Eng
,
Nanotechnology
18
,
084006
(
2007
).
48.
H.
Ishii
,
K.
Sugiyama
,
E.
Ito
, and
K.
Seki
,
Adv. Mater.
11
,
605
625
(
1999
).
49.
F.
Fungo
,
M. E.
Milanesio
,
E. N.
Durantini
,
L.
Otero
, and
T.
Dittrich
,
J. Mater. Chem.
17
,
2107
2112
(
2007
).
50.
B.
Barszcz
,
B.
Laskowska
,
A.
Graja
,
E. Y.
Park
,
T.-D.
Kim
, and
K.-S.
Lee
,
Chem. Phys. Lett.
479
(
4–6
),
224
228
(
2009
).
51.
M.
Maggini
,
G.
Scorrano
, and
M.
Prato
,
J. Am. Chem. Soc.
115
(
21
),
9798
9799
(
1993
).
52.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zheng
,
J. L.
Sonnenberg
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
N.
Rega
,
J. M.
Millam
,
M.
Klene
,
J. E.
Knox
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
V. G.
Zakrzewski
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
S.
Dapprich
,
A. D.
Daniels
,
O.
Farkas
,
J. B.
Foresman
,
J. V.
Ortiz
,
J.
Cioslowski
, and
D. J.
Fox
,
Gaussian 09, Rev. A.02
(
Gaussian Inc.
,
Wallingford, CT
,
2009
).
53.
R.
Dennington
,
T.
Keith
, and
J.
Millam
,
Gauss View, Version 5
(
Semichem Inc.
,
Shawnee Mission, KS
,
2009
).
54.
S. I.
Gorelsky
,
AOMix: Program for Molecular Orbital Analysis
(
University of Ottawa
,
2007
).
55.
K.
Lewandowska
,
A.
Graja
,
B.
Barszcz
,
A.
Biadasz
, and
D.
Wróbel
,
New J. Chem
35
,
1291
1295
(
2011
).
56.
K.
Lewandowska
,
B.
Barszcz
,
A.
Graja
,
S. Y.
Nam
,
Y.-S.
Han
,
T.-D.
Kim
, and
K.-S.
Lee
,
Spectrochim. Acta A
118
,
204
209
(
2014
).
57.
Y.
Ge
, “
Chemical and electronic properties of semiconducting oligomer and thiol monolayer interfaces
,” Ph.D. thesis,
Dalian University of |Technology
, Dalian, China,
2008
).
You do not currently have access to this content.