We study water adsorption-induced deformation of a monolithic, mesoporous silicon membrane traversed by independent channels of ∼8 nm diameter. We focus on the elastic constant associated with the Laplace pressure-induced deformation of the membrane upon capillary condensation, i.e., the pore-load modulus. We perform finite-element method (FEM) simulations of the adsorption-induced deformation of hexagonal and square lattices of cylindrical pores representing the membrane. We find that the pore-load modulus weakly depends on the geometrical arrangement of pores, and can be expressed as a function of porosity. We propose an analytical model which relates the pore-load modulus to the porosity and to the elastic properties of bulk silicon (Young's modulus and Poisson's ratio), and provides an excellent agreement with FEM results. We find good agreement between our experimental data and the predictions of the analytical model, with the Young's modulus of the pore walls slightly lower than the bulk value. This model is applicable to a large class of materials with morphologies similar to mesoporous silicon. Moreover, our findings suggest that liquid condensation experiments allow one to elegantly access the elastic constants of a mesoporous medium.

1.
L.
Canham
,
Appl. Phys. Lett.
57
,
1046
(
1990
).
2.
V.
Lehmann
and
U.
Gösele
,
Appl. Phys. Lett.
58
,
856
(
1991
).
3.
M. J.
Sailor
,
Porous Silicon in Practice: Preparation, Characterization and Applications
(
John Wiley & Sons
,
2012
).
4.
Handbook of Porous Silicon
, edited by
L.
Canham
(
Springer
,
2015
).
5.
J.
Henstock
,
L.
Canham
, and
S.
Anderson
,
Acta Biomater.
11
,
17
(
2015
).
6.
P.
Huber
,
J. Phys.: Condens. Matter
27
,
103102
(
2015
).
7.
D.
Bellet
,
P.
Lamagnere
,
A.
Vincent
, and
Y.
Brechet
,
J. Appl. Phys.
80
,
3772
(
1996
).
8.
C.
Populaire
,
B.
Remaki
,
V.
Lysenko
,
D.
Barbier
,
H.
Artmann
, and
T.
Pannek
,
Appl. Phys. Lett.
83
,
1370
(
2003
).
9.
B.
Coasne
,
A.
Grosman
,
C.
Ortega
, and
M.
Simon
,
Phys. Rev. Lett.
88
,
256102
(
2002
).
10.
D.
Wallacher
,
N.
Künzner
,
D.
Kovalev
,
N.
Knorr
, and
K.
Knorr
,
Phys. Rev. Lett.
92
,
195704
(
2004
).
11.
T.
Hofmann
,
D.
Wallacher
,
P.
Huber
, and
K.
Knorr
,
J. Low Temp. Phys.
140
,
91
(
2005
).
12.
S.
Naumov
,
A.
Khokhlov
,
R.
Valiullin
,
J.
Kärger
, and
P. A.
Monson
,
Phys. Rev. E
78
,
060601
(
2008
).
13.
P.
Kumar
,
T.
Hofmann
,
K.
Knorr
,
P.
Huber
,
P.
Scheib
, and
P.
Lemmens
,
J. Appl. Phys.
103
,
024303
(
2008
).
14.
A.
Henschel
,
P.
Kumar
,
T.
Hofmann
,
K.
Knorr
, and
P.
Huber
,
Phys. Rev. B
79
,
032601
(
2009
).
15.
J.
Kärger
and
R.
Valiullin
, in
Handbook of Porous Silicon
, edited by
L.
Canham
(
Springer
,
2014
), pp.
1
10
.
16.
A. S.
Westover
,
J. W.
Tian
,
S.
Bernath
,
L.
Oakes
,
R.
Edwards
,
F. N.
Shabab
,
S.
Chatterjee
,
A. V.
Anilkumar
, and
C. L.
Pint
,
Nano Lett.
14
,
3197
(
2014
).
17.
G. Y.
Gor
and
A. V.
Neimark
,
Langmuir
26
,
13021
(
2010
).
18.
C.
Amberg
and
R.
McIntosh
,
Can. J. Chem.
30
,
1012
(
1952
).
19.
K.
Schappert
and
R.
Pelster
,
Langmuir
30
,
14004
(
2014
).
20.
G.
Günther
,
J.
Prass
,
O.
Paris
, and
M.
Schoen
,
Phys. Rev. Lett.
101
,
086104
(
2008
).
21.
J.
Prass
,
D.
Müter
,
P.
Fratzl
, and
O.
Paris
,
Appl. Phys. Lett.
95
,
083121
(
2009
).
22.
C.
Balzer
,
R.
Morak
,
M.
Erko
,
C.
Triantafillidis
,
N.
Hüsing
, and
O.
Paris
,
Z. Phys. Chem.
(published online).
23.
K.
Mogilnikov
and
M.
Baklanov
,
Electrochem. Solid-State Lett.
5
,
F29
(
2002
).
24.
S.
Dourdain
,
D.
Britton
,
H.
Reichert
, and
A.
Gibaud
,
Appl. Phys. Lett.
93
,
183108
(
2008
).
25.
G.
Reichenauer
and
G.
Scherer
,
J. Non-Cryst. Solids
285
,
167
(
2001
).
26.
T.
Herman
,
J.
Day
, and
J.
Beamish
,
Phys. Rev. B
73
,
094127
(
2006
).
27.
L.-H.
Shao
,
H.-J.
Jin
,
R. N.
Viswanath
, and
J.
Weissmüller
,
EPL
89
,
66001
(
2010
).
28.
G.
Dolino
,
D.
Bellet
, and
C.
Faivre
,
Phys. Rev. B
54
,
17919
(
1996
).
29.
L.
Bertinetti
,
F.
Fischer
, and
P.
Fratzl
,
Phys. Rev. Lett.
111
,
238001
(
2013
).
30.
Q.
Zhao
,
J. W.
Dunlop
,
X.
Qiu
,
F.
Huang
,
Z.
Zhang
,
J.
Heyda
,
J.
Dzubiella
,
M.
Antonietti
, and
J.
Yuan
,
Nat. Commun.
5
,
4293
(
2014
).
31.
G. W.
Scherer
,
J. Am. Ceram. Soc.
69
,
473
(
1986
).
32.
L. J.
Gibson
and
M. F.
Ashby
,
Cellular Solids: Structure and Properties
(
Cambridge University Press
,
1999
).
33.
A.
Grosman
,
J.
Puibasset
, and
E.
Rolley
,
EPL
109
,
56002
(
2015
).
34.
J.
Landers
,
G. Y.
Gor
, and
A. V.
Neimark
,
Colloids Surf., A
437
,
3
(
2013
).
35.
G. Y.
Gor
,
O.
Paris
,
J.
Prass
,
P. A.
Russo
,
M. M. L.
Ribeiro Carrott
, and
A. V.
Neimark
,
Langmuir
29
,
8601
(
2013
).
37.
L.
Canham
, “
Mechanical properties of porous silicon
,”
Handbook of Porous Silicon
(
Springer
,
2015
), pp.
213
220
.
38.
H.
Magoariec
and
A.
Danescu
,
Phys. Status Solidi C
6
,
1680
(
2009
).
39.
F.
Hecht
,
J. Numer. Math.
20
,
251
(
2012
).
40.
M. A.
Hopcroft
,
W. D.
Nix
, and
T. W.
Kenny
,
J. Microelectromech. Syst.
19
,
229
(
2010
).
41.
S.
Timoshenko
and
J.
Goodier
,
Theory of Elasticity
, 3rd ed. (
McGraw-Hill
,
New York
,
1970
).
42.
L. D.
Landau
and
E.
Lifshitz
,
Theory of Elasticity
, Course of Theoretical Physics Vol.
7
, 3rd ed. (
Elsevier
,
1986
).
You do not currently have access to this content.