The responsivity (R) of a thin film photodetector is proportional to the product of its photo-induced carrier density (n) and mobility (μ). However, when choosing between layer heterojunction (LH) and bulk heterojunction (BH) field-effect phototransistors (FEpTs), it is still unclear which of the two device structures is more conducive to photodetection. A comparison study is performed on the two structures based on polymer and PbS quantum dot hybrids. Both devices exhibit ambipolar behavior, with μE ≈ μH = 3.7 cm2 V−1 s−1 for BH-FEpTs and μH = 36 cm2 V−1 s−1 and μE = 52 cm2 V−1 s−1 for LH-FEpTs. Because of the improvements in μ and the channel order degree (α), the responsivity of LH-FEpTs is as high as 101 A/W, which is as much as two orders of magnitude higher than that of BH-FEpTs (10−1A/W) under the same conditions. Although the large area of the BH improves both the exciton separation degree (β) and n in the BH-FEpT, the lack of an effective transport mechanism becomes the main constraint on high device responsivity. Therefore, LH-FEpTs are better candidates for use as photo detectors, and a “three-high” principle of high α, β, and μ is found to be required for high responsivity.

At the request of the authors, this article is being retracted effective 23 February 2017.

1.
Y.
Yang
,
W.
Rodriguez-Cordoba
, and
T.
Lian
,
Nano Lett.
12
(
8
),
4235
4241
(
2012
).
2.
S. A.
McDonald
,
G.
Konstantatos
,
S.
Zhang
,
P. W.
Cyr
,
E. J. D.
Klem
,
L.
Levina
, and
E. H.
Sargent
,
Nat. Mater.
4
(
2
),
138
142
(
2005
).
3.
S.
Zhang
,
P. W.
Cyr
,
S. A.
McDonald
,
G.
Konstantatos
, and
E. H.
Sargent
,
Appl. Phys. Lett.
87
(
23
),
233101
(
2005
).
4.
G.
Konstantatos
,
I.
Howard
,
A.
Fischer
,
S.
Hoogland
,
J.
Clifford
,
E.
Klem
,
L.
Levina
, and
E. H.
Sargent
,
Nature
442
(
7099
),
180
183
(
2006
).
5.
T.
Rauch
,
M.
Boberl
,
S. F.
Tedde
,
J.
Furst
,
M. V.
Kovalenko
,
G. N.
Hesser
,
U.
Lemmer
,
W.
Heiss
, and
O.
Hayden
,
Nat. Photonics
3
(
6
),
332
336
(
2009
).
6.
W.
Zhang
,
C.-P.
Chuu
,
J.-K.
Huang
,
C.-H.
Chen
,
M.-L.
Tsai
,
Y.-H.
Chang
,
C.-T.
Liang
,
Y.-Z.
Chen
,
Y.-L.
Chueh
,
J.-H.
He
,
M.-Y.
Chou
, and
L.-J.
Li
,
Sci. Rep.
4
(
1038
),
03826
(
2014
).
7.
F.
Hetsch
,
N.
Zhao
,
S. V.
Kershaw
, and
A. L.
Rogach
,
Mater. Today
16
(
9
),
312
325
(
2013
).
8.
H.
Yu
,
Z.
Bao
, and
J. H.
Oh
,
Adv. Funct. Mater.
23
(
5
),
629
639
(
2013
).
9.
W.
Feng
,
C.
Qin
,
Y.
Shen
,
Y.
Li
,
W.
Luo
,
H.
An
, and
Y.
Feng
,
Sci. Rep.
4
,
3777
(
2014
).
10.
I. J.
Kramer
and
E. H.
Sargent
,
Chem. Rev.
114
(
1
),
863
882
(
2014
).
11.
Y.
Zhou
,
M.
Eck
, and
M.
Kruger
,
Energy Environ. Sci.
3
,
1851
1864
(
2010
).
12.
H.-C.
Liao
,
C.-S.
Tsao
,
T.-H.
Lin
,
M.-H.
Jao
,
C.-M.
Chuang
,
S.-Y.
Chang
,
Y.-C.
Huang
,
Y.-T.
Shao
,
C.-Y.
Chen
,
C.-J.
Su
,
U. S.
Jeng
,
Y.-F.
Chen
, and
W.-F.
Su
,
ACS Nano
6
(
2
),
1657
1666
(
2012
).
13.
Z.
Sun
,
J.
Li
, and
F.
Yan
,
J. Mater. Chem.
22
(
40
),
21673
21678
(
2012
).
14.
G.
Konstantatos
,
M.
Badioli
,
L.
Gaudreau
,
J.
Osmond
,
M.
Bernechea
,
F. P. G.
de Arquer
,
F.
Gatti
, and
F. H. L.
Koppens
,
Nat. Nanotechnol.
7
(
6
),
363
368
(
2012
).
15.
Z.
Sun
,
Z.
Liu
,
J.
Li
,
G.-A.
Tai
,
S.-P.
Lau
, and
F.
Yan
,
Adv. Mater.
24
(
43
),
5878
5883
(
2012
).
16.
W.
Mingqing
and
W.
Xiaogong
, in
Proceedings of ISES World Congress 2007 (Vol. I–Vol. V)
, edited by
D. Y.
Goswami
and
Y.
Zhao
(
Springer Berlin
Heidelberg
,
2009
), Vols.
1303–1307
, pp.
263
.
17.
Y.
Yang
and
T.
Lian
,
Coord. Chem. Rev.
263
,
229
238
(
2014
).
18.
J. Y.
Kim
,
O.
Voznyy
,
D.
Zhitomirsky
, and
E. H.
Sargent
,
Adv. Mater.
25
(
36
),
4986
5010
(
2013
).
19.
See supplementary material at http://dx.doi.org/10.1063/1.4922917E-APPLAB-106-015526 for Material preparation and characterization.
20.
I.
Kang
and
F. W.
Wise
,
J. Opt. Soc. Am. B
14
(
7
),
1632
1646
(
1997
).
21.
L.
Britnell
,
R. V.
Gorbachev
,
R.
Jalil
,
B. D.
Belle
,
F.
Schedin
,
A.
Mishchenko
,
T.
Georgiou
,
M. I.
Katsnelson
,
L.
Eaves
,
S. V.
Morozov
,
N. M. R.
Peres
,
J.
Leist
,
A. K.
Geim
,
K. S.
Novoselov
, and
L. A.
Ponomarenko
,
Science
335
(
6071
),
947
950
(
2012
).
22.
R.
Buonsanti
and
D. J.
Milliron
,
Chem. Mater.
25
(
8
),
1305
1317
(
2013
).
23.
S. Z.
Bisri
,
J.
Gao
,
V.
Derenskyi
,
W.
Gomulya
,
I.
Iezhokin
,
P.
Gordiichuk
,
A.
Herrmann
, and
M. A.
Loi
,
Adv. Mater.
24
(
46
),
6147
6152
(
2012
).
24.
J.
Li
,
L.
Niu
,
Z.
Zheng
, and
F.
Yan
,
Adv. Mater.
26
(
31
),
5239
5273
(
2014
).
25.
C. O.
Kim
,
S.
Kim
,
D. H.
Shin
,
S. S.
Kang
,
J. M.
Kim
,
C. W.
Jang
,
S. S.
Joo
,
J. S.
Lee
,
J. H.
Kim
,
S.-H.
Choi
, and
E.
Hwang
,
Nat. Commun.
5
,
3249
(
2014
).
26.
G.
Zaiats
,
D.
Yanover
,
R.
Vaxenburg
,
J.
Tilchin
,
A.
Sashchiuk
, and
E.
Lifshitz
,
Materials
7
(
11
),
7243
7275
(
2014
).
27.
A. R.
Inigo
,
Y. F.
Huang
,
J. D.
White
,
Y. S.
Huang
,
W. S.
Fann
,
K. Y.
Peng
, and
S. A.
Chen
,
J. Chin. Chem. Soc.
57
(
3
B),
459
468
(
2010
).
28.
M.
Li
,
C.
An
,
T.
Marszalek
,
X.
Guo
,
Y.-Z.
Long
,
H.
Yin
,
C.
Gu
,
M.
Baumgarten
,
W.
Pisula
, and
K.
Müllen
,
Chem. Mater.
27
(
6
),
2218
2223
(
2015
).
29.
L.
Britnell
,
R. M.
Ribeiro
,
A.
Eckmann
,
R.
Jalil
,
B. D.
Belle
,
A.
Mishchenko
,
Y.-J.
Kim
,
R. V.
Gorbachev
,
T.
Georgiou
,
S. V.
Morozov
,
A. N.
Grigorenko
,
A. K.
Geim
,
C.
Casiraghi
,
A. H. C.
Neto
, and
K. S.
Novoselov
,
Science
340
(
6138
),
1311
1314
(
2013
).
30.
Z.
Sun
and
H.
Chang
,
ACS Nano
8
(
5
),
4133
4156
(
2014
).
31.
C. A.
Amorim
,
M. R.
Cavallari
,
G.
Santos
,
F. J.
Fonseca
,
A. M.
Andrade
, and
S.
Mergulhão
,
J. Non-Cryst. Solids
358
(
3
),
484
491
(
2012
).
32.
D. S.
Chung
,
J.-S.
Lee
,
J.
Huang
,
A.
Nag
,
S.
Ithurria
, and
D. V.
Talapin
,
Nano Lett.
12
(
4
),
1813
1820
(
2012
).

Supplementary Material

You do not currently have access to this content.