When subjected to a temperature gradient, the liquid film formed on a particle surface in near-critical vapor may undergo osmotic flow. Such a flow can induce a normal vapor flux onto (away from) the particle surface to compensate the loss (release the excess) of liquid as a result of condensation (evaporation) and produce significant thermophoretic mobility due to the extreme fluid compressibility during the phase change. Based on this principle, we have formulated this unique process and solved for the phoretic mobility by applying the boundary layer method. Unlike the classic mechanisms, this term of phase transition-induced phoretic mobility scales reversely with particle size, which becomes dominant for nanoparticles.

1.
J. L.
Anderson
, “
Colloid transport by interfacial forces
,”
Annu. Rev. Fluid Mech.
21
,
61
99
(
1989
).
2.
A.
Sen
,
M.
Ibele
,
Y.
Hong
, and
D.
Velegol
, “
Chemo and phototactic nano/microbots
,”
Faraday Discuss.
143
,
15
27
(
2009
).
3.
W.
Wang
,
W.
Duan
,
S.
Ahmed
,
T. E.
Mallouk
, and
A.
Sen
, “
Small power: Autonomous nano-and micromotors propelled by self-generated gradients
,”
Nano Today
8
,
531
554
(
2013
).
4.
J.
Gibbs
and
Y.-P.
Zhao
, “
Autonomously motile catalytic nanomotors by bubble propulsion
,”
Appl. Phys. Lett.
94
,
163104
(
2009
).
5.
W. F.
Paxton
,
A.
Sen
, and
T. E.
Mallouk
, “
Motility of catalytic nanoparticles through self-generated forces
,”
Chemistry Eur. J.
11
,
6462
6470
(
2005
).
6.
H.
Schägger
and
G.
Von Jagow
, “
Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa
,”
Anal. Biochem.
166
,
368
379
(
1987
).
7.
K.
Weber
and
M.
Osborn
, “
The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis
,”
J. Biol. Chem.
244
,
4406
4412
(
1969
).
8.
B.
Bhushan
,
Handbook of Micro/Nano Tribology
(
CRC Press
,
2010
).
9.
M.
Hanauer
,
S.
Pierrat
,
I.
Zins
,
A.
Lotz
, and
C.
Sönnichsen
, “
Separation of nanoparticles by gel electrophoresis according to size and shape
,”
Nano Lett.
7
,
2881
2885
(
2007
).
10.
A. G.
Ewing
,
R. A.
Wallingford
, and
T. M.
Olefirowicz
, “
Capillary electrophoresis
,”
Anal. Chem.
61
,
292A
303A
(
1989
).
11.
V.
Pretorius
,
B.
Hopkins
, and
J.
Schieke
, “
Electro-osmosis: A new concept for high-speed liquid chromatography
,”
J. Chromatogr. A
99
,
23
30
(
1974
).
12.
A.
Tiselius
, “
A new apparatus for electrophoretic analysis of colloidal mixtures
,”
Trans. Faraday Soc.
33
,
524
531
(
1937
).
13.
J. L.
Anderson
and
D. C.
Prieve
, “
Diffusiophoresis caused by gradients of strongly adsorbing solutes
,”
Langmuir
7
,
403
406
(
1991
).
14.
J.
Ebel
,
J. L.
Anderson
, and
D.
Prieve
, “
Diffusiophoresis of latex particles in electrolyte gradients
,”
Langmuir
4
,
396
406
(
1988
).
15.
H.
Brenner
, “
Phoresis in fluids
,”
Phys. Rev. E
84
,
066317
(
2011
).
16.
L.
Talbot
,
R.
Cheng
,
R.
Schefer
, and
D.
Willis
, “
Thermophoresis of particles in a heated boundary layer
,”
J. Fluid Mech.
101
,
737
758
(
1980
).
17.
A.
Würger
, “
Is Soret equilibrium a non-equilibrium effect?
,”
C. R. Mec.
341
,
438
448
(
2013
).
18.
F.
Zheng
, “
Thermophoresis of spherical and non-spherical particles: a review of theories and experiments
,”
Adv. Colloid Interface Sci.
97
,
255
278
(
2002
).
19.
R.
Piazza
and
A.
Parola
, “
Thermophoresis in colloidal suspensions
,”
J. Phys.: Condens. Matter
20
,
153102
(
2008
).
20.
M.
Braibanti
,
D.
Vigolo
, and
R.
Piazza
, “
Does thermophoretic mobility depend on particle size?
,”
Phys. Rev. Lett.
100
,
108303
(
2008
).
21.
S.
Duhr
and
D.
Braun
, “
Thermophoretic depletion follows Boltzmann distribution
,”
Phys. Rev. Lett.
96
,
168301
(
2006
).
22.
K. A.
Eslahian
and
M.
Maskos
, “
Hofmeister effect in thermal field-flow fractionation of colloidal aqueous dispersions
,”
Colloids Surf., A
413
,
65
70
(
2012
).
23.
H.-R.
Jiang
,
H.
Wada
,
N.
Yoshinaga
, and
M.
Sano
, “
Manipulation of colloids by a nonequilibrium depletion force in a temperature gradient
,”
Phys. Rev. Lett.
102
,
208301
(
2009
).
24.
S. A.
Putnam
and
D. G.
Cahill
, “
Transport of nanoscale latex spheres in a temperature gradient
,”
Langmuir
21
,
5317
5323
(
2005
).
25.
A.
Parola
and
R.
Piazza
, “
Particle thermophoresis in liquids
,”
Eur. Phys. J. E
15
,
255
263
(
2004
).
26.
R.
Piazza
, “
Thermal forces: Colloids in temperature gradients
,”
J. Phys.: Condens. Matter
16
,
S4195
S4211
(
2004
).
27.
A.
Würger
, “
Thermal non-equilibrium transport in colloids
,”
Rep. Prog. Phys.
73
,
126601
(
2010
).
28.
A.
Ajdari
and
L.
Bocquet
, “
Giant amplification of interfacially driven transport by hydrodynamic slip: Diffusio-osmosis and beyond
,”
Phys. Rev. Lett.
96
,
186102
(
2006
).
29.
J.
Morthomas
and
A.
Würger
, “
Thermophoresis at a charged surface: The role of hydrodynamic slip
,”
J. Phys.: Condens. Matter
21
,
035103
(
2009
).
30.
Y. C.
Chang
and
H. J.
Keh
, “
Effects of thermal stress slip on thermophoresis and photophoresis
,”
J. Aerosol Sci.
50
,
1
10
(
2012
).
31.
R. H.
French
,
V. A.
Parsegian
,
R.
Podgornik
,
R. F.
Rajter
,
A.
Jagota
,
J.
Luo
,
D.
Asthagiri
,
M. K.
Chaudhury
,
Y.
Chiang
,
S.
Granick
 et al., “
Long range interactions in nanoscale science
,”
Rev. Mod. Phys.
82
,
1887
(
2010
).
32.
H. A.
Stone
and
A. D.
Samuel
, “
Propulsion of microorganisms by surface distortions
,”
Phys. Rev. Lett.
77
,
4102
(
1996
).
33.
H.
Boukari
,
J.
Shaumeyer
,
M. E.
Briggs
, and
R. W.
Gammon
, “
Critical speeding up in pure fluids
,”
Phys. Rev. A
41
,
2260
(
1990
).
34.
M.
Kilic
,
M.
Bazant
, and
A.
Ajdari
, “
Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging
,”
Phys. Rev. E
75
,
021502
(
2007
).
35.
J. N.
Israelachvili
,
Intermolecular and Surface Forces
, 3rd ed. (
Academic Press
,
2011
).
36.
H.
Tanaka
, “
Simple physical model of liquid water
,”
J. Chem. Phys.
112
,
799
809
(
2000
).
37.
T. G.
Trudeau
,
K. C.
Jena
, and
D. K.
Hore
, “
Water structure at solid surfaces of varying hydrophobicity
,”
J. Phys. Chem. C
113
,
20002
20008
(
2009
).
38.
D.
Argyris
,
N. R.
Tummala
,
A.
Striolo
, and
D. R.
Cole
, “
Molecular structure and dynamics in thin water films at the silica and graphite surfaces
,”
J. Phys. Chem. C
112
,
13587
13599
(
2008
).
39.
M.
Manjare
,
Y.
Ting Wu
,
B.
Yang
, and
Y. P.
Zhao
, “
Hydrophobic catalytic Janus motors: Slip boundary condition and enhanced catalytic reaction rate
,”
Appl. Phys. Lett.
104
,
054102
(
2014
).
40.
S.
Ebbens
,
M.-H.
Tu
,
J. R.
Howse
, and
R.
Golestanian
, “
Size dependence of the propulsion velocity for catalytic Janus-sphere swimmers
,”
Phys. Rev. E
85
,
020401
(
2012
).
You do not currently have access to this content.