A high mobility of 2250 cm2/V·s of a two-dimensional electron gas (2DEG) in a metalorganic chemical vapor deposition-grown AlGaN/GaN heterostructure was demonstrated. The mobility enhancement was a result of better electron confinement due to a sharp AlGaN/GaN interface, as confirmed by scanning transmission electron microscopy analysis, not owing to the formation of a traditional thin AlN exclusion layer. Moreover, we found that the electron mobility in the sharp-interface heterostructures can sustain above 2000 cm2/V·s for a wide range of 2DEG densities. Finally, it is promising that the sharp-interface AlGaN/GaN heterostructure would enable low contact resistance fabrication, less impurity-related scattering, and trapping than the AlGaN/AlN/GaN heterostructure, as the high-impurity-contained AlN is removed.

1.
L.
Hsu
and
W.
Walukiewicz
,
Phys. Rev. B
56
,
1520
(
1997
).
2.
L.
Hsu
and
W.
Walukiewicz
,
J. Appl. Phys.
89
,
1783
(
2001
).
3.
N.
Maeda
,
K.
Tsubaki
,
T.
Saitoh
,
T.
Tawara
, and
N.
Kobayashi
,
Opt. Mater.
23
,
211
(
2003
).
4.
V. M.
Polyakov
,
V.
Cimalla
,
V.
Lebedev
,
K.
Köhler
,
S.
Müller
,
P.
Waltereit
, and
O.
Ambacher
,
Appl. Phys. Lett.
97
,
142112
(
2010
).
5.
R. S.
Balmer
,
K. P.
Hilton
,
K. J.
Nash
,
M. J.
Uren
,
D. J.
Wallis
,
A.
Wells
,
M.
Missous
, and
T.
Martin
,
Phys. Status Solidi C
0
,
2331
(
2003
).
6.
X.
Wang
,
G.
Hu
,
Z.
Ma
,
J.
Ran
,
C.
Wang
,
H.
Xiao
,
J.
Tang
,
J.
Li
,
J.
Wang
,
Y.
Zeng
,
J.
Li
, and
Z.
Wang
,
J. Cryst. Growth
298
,
835
(
2007
).
7.
U.
Forsberg
,
A.
Lundskog
,
A.
Kakanakova-Georgieva
,
R.
Ciechonski
, and
E.
Janzén
,
J. Cryst. Growth
311
,
3007
(
2009
).
8.
R. S.
Balmer
,
K. P.
Hilton
,
K. J.
Nash
,
M. J.
Uren
,
D. J.
Wallis
,
D.
Lee
,
A.
Wells
,
M.
Missous
, and
T.
Martin
,
Semicond. Sci. Technol.
19
,
L65
(
2004
).
9.
Y. F.
Wu
,
d.
Kapolnek
,
J. P.
Ibbetson
,
P.
Parikh
,
B. P.
Keller
, and
U. K.
Mishra
,
IEEE Trans. Electron Devices
48
,
586
(
2001
).
10.
J. G.
Felbinger
,
M.
Fagerlind
,
O.
Axelsson
,
N.
Rorsman
,
X.
Gao
,
S.
Guo
,
W. J.
Schaff
, and
L. F.
Eastman
,
IEEE Electron Device Lett.
32
,
889
(
2011
).
11.
M.
Fagerlind
and
N.
Rorsman
,
Phys. Status Solidi C
8
,
2204
(
2011
).
12.
J. T.
Chen
,
U.
Forsberg
, and
E.
Janzen
,
Appl. Phys. Lett.
102
,
193506
(
2013
).
13.
S. W.
Kaun
,
M. H.
Wong
,
U. K.
Mishra
, and
J. S.
Speck
,
Appl. Phys. Lett.
100
,
262102
(
2012
).
14.
D.
Nguyen
,
K.
Hogan
,
A.
Blew
, and
M.
Cordes
,
J. Cryst. Growth
272
,
59
(
2004
).
15.
K. A
Mkholyan
,
J.
Silcox
,
Z.
Yu
,
W. J.
Schaff
, and
L. F.
Eastman
,
J. Appl. Phys.
95
,
1843
(
2004
).
16.
A. Y.
Polyakova
,
M.
Shin
,
J. A.
Freitas
,
M.
Skowronski
,
D. W.
Greve
, and
R. G.
Wilson
,
J. Appl. Phys.
80
,
6349
(
1996
).
17.
G.
Parish
,
S.
Keller
,
S. P.
Denbaars
, and
U. K.
Mishra
,
J. Electron. Mater.
29
,
15
(
2000
).
18.
M.
Imura
,
H.
Sugimura
,
N.
Okada
,
M.
Iwaya
,
S.
Kamiyama
,
H.
Amano
,
I.
Akasaki
, and
A.
Bandoh
,
J. Cryst. Growth
310
,
2308
(
2008
).
19.
L.
Fu
,
H.
Lu
,
D.
Chen
,
R.
Zhang
,
Y.
Zheng
,
T.
Chen
,
K.
Wei
, and
X.
Liu
,
Appl. Phys. Lett.
98
,
173508
(
2011
).
20.
M.
Meneghini
,
A.
Stocco
,
R.
Silvestri
,
G.
Meneghesso
, and
E.
Zanoni
,
Appl. Phys. Lett.
100
,
233508
(
2012
).
You do not currently have access to this content.