Nano-materials are commonly stabilized by supports to maintain their desired shape and size. When these nano-materials take up interstitial atoms, this attachment to the support induces mechanical stresses. These stresses can be high when the support is rigid. High stress in the nano-material is typically released by delamination from the support or by the generation of defects, e.g., dislocations. As high mechanical stress can be beneficial for tuning the nano-materials properties, it is of general interest to deduce how real high mechanical stress can be gained. Here, we show that below a threshold nano-material size, dislocation formation can be completely suppressed and, when delamination is inhibited, even the ultrahigh stress values of the linear elastic limit can be reached. Specifically, for hydrogen solved in epitaxial niobium films on sapphire substrate supports a threshold film thickness of 6 nm was found and mechanical stress of up to (−10 ± 1) GPa was reached. This finding is of basic interest for hydrogen energy applications, as the hydride stability in metals itself is affected by mechanical stress. Thus, tuning of the mechanical stress-state in nano-materials may lead to improved storage properties of nano-sized materials.

2.
A.
Pundt
and
R.
Kirchheim
,
Annu. Rev. Mater. Res.
36
,
555
(
2006
).
3.
S.
Jain
,
A. H.
Harker
, and
R. A.
Cowley
,
Philos. Mag. A
75
,
1461
(
1997
).
4.
U.
Laudahn
,
A.
Pundt
,
M.
Bicker
,
U.
von Hülsen
,
U.
Geyer
,
T.
Wagner
, and
R.
Kirchheim
,
J. Alloys Compd.
293
,
490
(
1999
).
5.
J.
Weissmüller
, “
Thermodynamics of nanocrystalline solids
,” in
Nanocrystalline Metals and Oxides: Selected Properties and Applications
(
Kluwer Acad. Publ.
,
Boston
,
2001
).
6.
J.
Weissmüller
and
C.
Lemier
,
Philos. Mag. Lett.
80
,
411
(
2000
).
7.
S.
Wagner
and
A.
Pundt
,
Appl. Phys. Lett.
92
,
051914-1-3
(
2008
).
8.
S.
Wagner
,
M.
Moser
,
C.
Greupel
,
K.
Peeper
,
P.
Reichart
,
A.
Pundt
, and
G.
Dollinger
,
Int. J. Hydrogen Energy
38
,
13822
(
2013
).
9.
R.
Koch
,
J. Phys.: Condens. Matter
6
,
9519
(
1994
).
10.
M. F.
Doerner
and
W. D.
Nix
,
Crit. Rev. Solid State Mater. Sci.
14
,
225
(
1988
).
11.
J. A.
Thornton
,
J.
Tabock
, and
D. W.
Hoffman
,
Thin Solid Films
64
,
111
(
1979
).
12.
M.
Pletea
,
W.
Brückner
,
H.
Wendrock
, and
R.
Kaltofen
,
J. Appl. Phys.
97
,
054908-1-7
(
2005
).
13.
T.
Scharf
,
J.
Faupel
,
K.
Sturm
, and
H. U.
Krebs
,
Appl. Phys. A
79
,
1587
(
2004
).
14.
T.
Scharf
,
J.
Faupel
,
K.
Sturm
, and
H. U.
Krebs
,
J. Appl. Phys.
94
,
4273
(
2003
).
15.
H.
Windischmann
,
Crit. Rev. Solid State Mater. Sci.
17
,
547
(
1992
).
16.
H.
Peisl
, “
Lattice strains due to hydrogen in metals
,” in
Hydrogen in Metals I
(
Springer
,
Berlin
,
1978
).
17.
A.
Pundt
,
U.
Laudahn
,
U. v.
Hülsen
,
U.
Geyer
,
M.
Getzlaff
,
M.
Bode
,
M.
Wiesendanger
, and
R.
Kirchheim
, “
Hydrogen Induced Plastic Deformation of Thin Films
” in
Thin Films—Stresses and Mechanical Properties VIII
, edited by
R.
Vinci
,
O.
Kraft
,
N.
Moody
,
P.
Besser
, and
E.
Shaffer II
(
Mater. Res. Soc. Symp. Proc.
,
1999
), Vol.
594
, p.
75
.
18.
A.
Pundt
,
M.
Getzlaff
,
M.
Bode
,
R.
Kirchheim
, and
R.
Wiesendanger
,
Phys. Rev. B
61
,
9964
(
2000
).
19.
A.
Pundt
, “
Metal-hydrogen systems: What changes when systems go to the nano-scale?
,” in
Materials Challenges in Alternative and Renewable Energy II: Ceramic Transactions
(
John Wiley & Sons, Inc.
,
Hoboken
,
2013
).
20.
A.
Pundt
and
P.
Pekarski
,
Scr. Mater.
48
,
419
(
2003
).
21.
A.
Pundt
,
E.
Nikitin
,
P.
Pekarski
, and
R.
Kirchheim
,
Acta Mater.
52
,
1579
(
2004
).
22.
M. D.
Uchic
,
D. M.
Dimiduk
,
J. N.
Florando
, and
W. D.
Nix
,
Science
305
,
986
(
2004
).
23.
K.
Gall
,
J.
Diao
, and
M. L.
Dunn
,
Nano Lett.
4
,
2431
(
2004
).
24.
O.
Kraft
,
P. A.
Gruber
,
R.
Mönig
, and
D.
Weygand
,
Annu. Rev. Mater. Res.
40
,
293
(
2010
).
25.
C. A.
Volkert
,
E.
Lilleodden
,
D.
Kramer
, and
J.
Weissmüller
,
Appl. Phys. Lett.
89
,
061920
(
2006
).
26.
C. A.
Volkert
and
E. T.
Lilleodden
,
Philos. Mag.
86
,
5567
(
2006
).
27.
G.
Richter
,
K.
Hillerich
,
D. S.
Gianola
,
R.
Mönig
,
O.
Kraft
, and
C. A.
Volkert
,
Nano Lett.
9
,
3048
(
2009
).
28.
Z.
Wu
,
J.-W.
Zhang
,
M. H.
Jhon
,
H.
Gao
, and
D. J.
Srolovitz
,
Nano Lett.
12
,
910
(
2012
).
29.
E.
Fromm
and
E.
Gebhardt
,
Gase und Kohlenstoff in Metallen
(
Springer
,
Berlin
,
1976
).
30.
K.
Nörthemann
and
A.
Pundt
,
Phys. Rev. B
78
,
014105-1-9
(
2008
).
31.
S.
Wagner
,
H. T.
Uchida
,
V.
Burlaka
,
M.
Vlach
,
M.
Vlceck
,
F.
Lukac
,
J.
Cizek
,
C.
Baehtz
,
A.
Bell
, and
A.
Pundt
,
Scr. Mater.
64
,
978
(
2011
).
32.
J. W.
Matthews
,
J. Vac. Sci. Technol.
12
,
126
(
1975
).
33.
J. W.
Matthews
and
A. E.
Blakeslee
,
J. Cryst. Growth
27
,
118
(
1974
).
34.
J. W.
Matthews
and
A. E.
Blakeslee
,
J. Cryst. Growth
29
,
273
(
1975
).
35.
J. H.
Van der Merwe
,
J. Appl. Phys.
34
,
117
(
1963
).
36.
J. H.
Van der Merwe
,
J. Appl. Phys.
34
,
123
(
1963
).
37.
A.
Pundt
,
Nanoskalige Metall-Wasserstoff-Systeme
(
Universitätsverlag Göttingen
,
Göttingen
,
2005
).
38.
G.
Song
,
A.
Remhof
,
K.
Theis-Bröhl
, and
H.
Zabel
,
Phys. Rev. Lett.
79
,
5062
(
1997
).
39.
E.
Grier
,
M.
Jenkins
,
A.
Petford-Long
,
R.
Ward
, and
M.
Wells
,
Thin Solid Films
358
,
94
(
2000
).
40.
K. J.
Carroll
,
J. Appl. Phys.
36
,
3689
(
1965
).
41.
A.
Wildes
,
J.
Mayer
, and
K.
Theis-Bröhl
,
Thin Solid Films
401
,
7
(
2001
).
42.
Y.
Fukai
,
The Metal-Hydrogen System – Basic Bulk Properties
(
Springer
,
Berlin
,
2005
).
43.
K.
Nörthemann
,
R.
Kirchheim
, and
A.
Pundt
,
J. Alloys Compd.
356–357
,
541
(
2003
).
44.
R.
Kirchheim
and
R. B.
McLellan
,
J. Electrochem. Soc.
127
,
2419
(
1980
).
45.
G. G.
Stoney
,
Proc. R. Soc. London, Ser. A
82
,
172
(
1909
).
46.
G.
Janssen
,
M.
Abdalla
,
F.
van Keulen
,
B.
Pujada
, and
B.
van Venrooy
,
Thin Solid Films
517
,
1858
(
2009
).
47.
See supplementary material at http://dx.doi.org/10.1063/1.4922285 for the calculation of the mechanical stress, the critical thickness for hydrogen-induced dislocation formation, and the surface quality of the samples.

Supplementary Material

You do not currently have access to this content.