We report charge storage based memristive operation of a junctionless thin film flash memory cell when it is operated as a two terminal device by grounding the gate. Unlike memristors based on nanoionics, the presented device mode, which we refer to as the flashristor mode, potentially allows greater control over the memristive properties, allowing rational design. The mode is demonstrated using a depletion type n-channel ZnO transistor grown by atomic layer deposition (ALD), with HfO2 as the tunnel dielectric, Al2O3 as the control dielectric, and non-stoichiometric silicon nitride as the charge storage layer. The device exhibits the pinched hysteresis of a memristor and in the unoptimized device, Roff/Ron ratios of about 3 are presented with low operating voltages below 5 V. A simplified model predicts Roff/Ron ratios can be improved significantly by adjusting the native threshold voltage of the devices. The repeatability of the resistive switching is excellent and devices exhibit 106 s retention time, which can, in principle, be improved by engineering the gate stack and storage layer properties. The flashristor mode can find use in analog information processing applications, such as neuromorphic computing, where well-behaving and highly repeatable memristive properties are desirable.

1.
D.
Kahng
and
S. M.
Sze
, “
A floating gate and its application to memory devices
,”
Bell Syst. Tech. J.
46
,
1288
1295
(
1967
).
2.
L. O.
Chua
, “
Memristor-the missing circuit element
,”
IEEE Trans. Circuit Theory
18
(
5
),
507
519
(
1971
).
3.
T.
Prodromakis
,
C.
Toumazou
, and
L.
Chua
, “
Two centuries of memristors
,”
Nat. Mater.
11
(
6
)
478
481
(
2012
).
4.
R.
Waser
and
M.
Aono
, “
Nanoionics-based resistive switching memories
,”
Nat. Mater.
6
(
11
),
833
840
(
2007
).
5.
R.
Waser
,
R.
Dittmann
,
G.
Staikov
, and
K.
Szot
, “
Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges
,”
Adv. Mater.
21
(
25–26
),
2632
2663
(
2009
).
6.
J. F.
Gibbons
and
W. E.
Beadle
, “
Switching properties of thin NiO films
,”
Solid-State Electron.
7
(
11
),
785
790
(
1964
).
7.
F.
Argall
, “
Switching phenomena in titanium oxide thin films
,”
Solid-State Electron.
11
(
5
),
535
541
(
1968
).
8.
K.
Terabe
,
T.
Hasegawa
,
T.
Nakayama
, and
M.
Aono
, “
Quantized conductance atomic switch
,”
Nature
433
(7021),
47
50
(
2005
).
9.
B. J.
Choi
,
D. S.
Jeong
,
S. K.
Kim
,
C.
Rohde
,
S.
Choi
,
J. H.
Oh
, and
S.
Tiedke
, “
Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition
,”
J. Appl. Phys.
98
(
3
),
033715
(
2005
).
10.
D. B.
Strukov
,
G. S.
Snider
,
D. R.
Stewart
, and
R. S.
Williams
, “
The missing memristor found
,”
Nature
453
(
7191
),
80
83
(
2008
).
11.
J. J.
Yang
,
M. D.
Pickett
,
X.
Li
,
D. A.
Ohlberg
,
D. R.
Stewart
, and
R. S.
Williams
, “
Memristive switching mechanism for metal/oxide/metal nanodevices
,”
Nat. Nanotechnol.
3
(
7
),
429
433
(
2008
).
12.
D. H.
Kwon
,
K. M.
Kim
,
J. H.
Jang
,
J. M.
Jeon
,
M. H.
Lee
,
G. H.
Kim
, and
C. S.
Hwang
, “
Atomic structure of conducting nanofilaments in TiO2 resistive switching memory
,”
Nat. Nanotechnol.
5
(
2
),
148
153
(
2010
).
13.
O. O.
Ekiz
,
M.
Urel
,
H.
Guner
,
A. K.
Mizrak
, and
A.
Dâna
, “
Reversible electrical reduction and oxidation of graphene oxide
,”
ACS Nano
5
(
4
),
2475
2482
(
2011
).
14.
H.
Acar
,
R.
Genc
,
M.
Urel
,
T. S.
Erkal
,
A.
Dana
, and
M. O.
Guler
, “
Self-assembled peptide nanofiber templated one-dimensional gold nanostructures exhibiting resistive switching
,”
Langmuir
28
(
47
),
16347
16354
(
2012
).
15.
G. S.
Snider
, “
Self-organized computation with unreliable, memristive nanodevices
,”
Nanotechnology
18
(
36
),
365202
(
2007
).
16.
J. J.
Yang
,
J.
Borghetti
,
D.
Murphy
,
D. R.
Stewart
, and
R. S.
Williams
, “
A family of electronically reconfigurable nanodevices
,”
Adv. Mater.
21
(
37
),
3754
3758
(
2009
).
17.
Q.
Xia
,
W.
Robinett
,
M. W.
Cumbie
,
N.
Banerjee
,
T. J.
Cardinali
,
J. J.
Yang
, and
R. S.
Williams
, “
Memristor–CMOS hybrid integrated circuits for reconfigurable logic
,”
Nano Lett.
9
(
10
),
3640
3645
(
2009
).
18.
H.
Kim
,
M. P.
Sah
,
C.
Yang
,
T.
Roska
, and
L. O.
Chua
, “
Neural synaptic weighting with a pulse-based memristor circuit
,”
IEEE Trans. Circuits Syst. I Regul. Pap.
59
(
1
),
148
158
(
2012
).
19.
S. H.
Jo
,
T.
Chang
,
I.
Ebong
,
B. B.
Bhadviya
,
P.
Mazumder
, and
W.
Lu
, “
Nanoscale memristor device as synapse in neuromorphic systems
,”
Nano Lett.
10
(
4
),
1297
1301
(
2010
).
20.
D.
Kuzum
,
R. G.
Jeyasingh
,
B.
Lee
, and
H. S. P.
Wong
, “
Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing
,”
Nano Lett.
12
(
5
),
2179
2186
(
2012
).
21.
S.
Yu
,
Y.
Wu
,
R.
Jeyasingh
,
D.
Kuzum
, and
H. S.
Wong
, “
An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation
,”
IEEE Trans. Electron Devices
58
(
8
),
2729
2737
(
2011
).
22.
S. H.
Jo
,
K. H.
Kim
, and
W.
Lu
, “
High-density crossbar arrays based on a Si memristive system
,”
Nano Lett.
9
(
2
),
870
874
(
2009
).
23.
J.
Yao
,
Z.
Sun
,
L.
Zhong
,
D.
Natelson
, and
J. M.
Tour
, “
Resistive switches and memories from silicon oxide
,”
Nano Lett.
10
(
10
),
4105
4110
(
2010
).
24.
S. H.
Jo
,
K. H.
Kim
, and
W.
Lu
, “
Programmable resistance switching in nanoscale two-terminal devices
,”
Nano Lett.
9
(
1
),
496
500
(
2009
).
25.
S.
Yu
,
H. Y.
Chen
,
B.
Gao
,
J.
Kang
, and
H. S. P.
Wong
, “
HfOx-based vertical resistive switching random access memory suitable for bit-cost-effective three-dimensional cross-point architecture
,”
ACS Nano
7
(
3
),
2320
2325
(
2013
).
26.
S. H.
Jo
and
W.
Lu
, “
CMOS compatible nanoscale nonvolatile resistance switching memory
,”
Nano Lett.
8
(
2
),
392
397
(
2008
).
27.
J. G.
Simmons
and
R. R.
Verderber
, “
New conduction and reversible memory phenomena in thin insulating films
,”
Proc. R. Soc. London, Ser. A
301
(
1464
),
77
102
(
1967
).
28.
J.
Ouyang
,
C. W.
Chu
,
C. R.
Szmanda
,
L.
Ma
, and
Y.
Yang
, “
Programmable polymer thin film and non-volatile memory device
,”
Nat. Mater.
3
(
12
),
918
922
(
2004
).
29.
F.
Alibart
,
S.
Pleutin
,
D.
Guérin
,
C.
Novembre
,
S.
Lenfant
,
K.
Lmimouni
,
C.
Gamrat
, and
D.
Vuillaume
, “
An organic nanoparticle transistor behaving as a biological spiking synapse
,”
Adv. Funct. Mater.
20
,
330
337
(
2010
).
30.
F.
Alibart
,
S.
Pleutin
,
O.
Bichler
,
C.
Gamrat
,
T.
Serrano-Gotarredona
,
B.
Linares-Barranco
, and
D.
Vuillaume
, “
A memristive nanoparticle/organic hybrid synapstor for neuroinspired computing
,”
Adv. Funct. Mater.
22
,
609
616
(
2012
).
31.
F. B.
Oruç
,
F.
Cimen
,
A.
Rizk
,
M.
Ghaffari
,
A.
Nayfeh
, and
A.
Okyay
, “
Thin-film ZnO charge-trapping memory cell grown in a single ALD step
,”
IEEE Electron Device Lett.
33
(
12
),
1714
1716
(
2012
).
32.
I. B.
Akca
,
A.
Dâna
,
A.
Aydinli
, and
R.
Turan
, “
Comparison of electron and hole charge-discharge dynamics in germanium nanocrystal flash memories
,”
Appl. Phys. Lett.
92
(
5
),
052103
(
2008
).
33.
A.
Dâna
,
I.
Akça
,
O.
Ergun
,
A.
Aydınlı
,
R.
Turan
, and
T. G.
Finstad
, “
Charge retention in quantized energy levels of nanocrystals
,”
Physica E
38
(
1
),
94
98
(
2007
).
34.
U.
Bostanci
,
M. K.
Abak
,
O.
Aktaş
, and
A.
Dâna
, “
Nanoscale charging hysteresis measurement by multifrequency electrostatic force spectroscopy
,”
Appl. Phys. Lett.
92
(
9
),
093108
(
2008
).
35.
A.
Dâna
,
I.
Akca
,
A.
Aydinli
,
R.
Turan
, and
T. G.
Finstad
, “
A figure of merit for optimization of nanocrystal flash memory design
,”
J. Nanosci. Nanotechnol.
8
(
2
),
510
517
(
2008
).
36.
P.
Pavan
,
R.
Bez
,
P.
Olivo
, and
E.
Zanoni
, “
Flash memory cells-an overview
,”
Proc. IEEE
85
(
8
),
1248
1271
(
1997
).
You do not currently have access to this content.