High aspect ratio CuO nanowires are synthesized by a simple and scalable method, thermal oxidation in air. The structural, morphological, optical, and electrical properties of the semiconducting nanowires were studied. Au-Ti/CuO nanowire and Pt/CuO nanowire electrical contacts were investigated. A dominant Schottky mechanism was evidenced in the Au-Ti/CuO nanowire junction and an ohmic behavior was observed for the Pt/CuO nanowire junction. The Pt/CuO nanowire/Pt structure allows the measurements of the intrinsic transport properties of the single CuO nanowires. It was found that an activation mechanism describes the behavior at higher temperatures, while a nearest neighbor hopping transport mechanism is characteristic at low temperatures. This was also confirmed by four-probe resistivity measurements on the single CuO nanowires. By changing the metal/semiconductor interface, devices such as Schottky diodes and field effect transistors based on single CuO p-type nanowire semiconductor channel are obtained. These devices are suitable for being used in various electronic circuits where their size related properties can be exploited.

1.
R. S.
Devan
,
R. A.
Patil
,
J.-H.
Lin
, and
Y.-R.
Ma
,
Adv. Funct. Mater.
22
,
3326
(
2012
).
2.
Q.
Zhang
,
K.
Zhang
,
D.
Xu
,
G.
Yang
,
H.
Huang
,
F.
Nieb
,
C.
Liu
, and
S.
Yang
,
Prog. Mater. Sci.
60
,
208
(
2014
).
3.
M.
Ahmad
and
J.
Zhu
,
J. Mater. Chem.
21
,
599
(
2011
).
4.
M. A.
Henderson
,
Surf. Sci. Rep.
66
,
185
(
2011
).
5.
W.
Wang
,
L.
Wang
,
H.
Shi
, and
Y.
Liang
,
CrystEngComm.
14
,
5914
(
2012
).
6.
X.
Jiang
,
T.
Herricks
, and
Y.
Xia
,
Nano Lett.
2
,
1333
(
2002
).
7.
L.
Wang
,
H.
Gong
,
C.
Wang
,
D.
Wang
,
K.
Tang
, and
Y.
Qian
,
Nanoscale
4
,
6850
(
2012
).
8.
M.
Cao
,
C.
Hu
,
Y.
Wang
,
Y.
Guo
,
C.
Guo
, and
E.
Wang
,
Chem. Commun.
2003
,
1884
.
9.
J.
Zhang
,
J.
Liu
,
Q.
Peng
,
X.
Wang
, and
Y.
Li
,
Chem. Mater.
18
,
867
(
2006
).
10.
B.
Heng
,
C.
Qing
,
D.
Sun
,
B.
Wang
,
H.
Wang
, and
Y.
Tang
,
RSC Adv.
3
,
15719
(
2013
).
11.
Q.
Yu
,
H.
Huang
,
R.
Chen
,
P.
Wang
,
H.
Yang
,
M.
Gao
,
X.
Peng
, and
Z.
Ye
,
Nanoscale
4
,
2613
(
2012
).
12.
X.
Wang
,
G.
Xi
,
S.
Xiong
,
Y.
Liu
,
B.
Xi
,
W.
Yu
, and
Y.
Qian
,
Cryst. Growth Des.
7
,
930
(
2007
).
13.
S.
Li
,
H.
Zhang
,
Y.
Ji
, and
D.
Yang
,
Nanotechnology
15
,
1428
(
2004
).
14.
H.
Xiang
,
Y.
Long
,
X.
Yu
,
X.
Zhang
,
N.
Zhao
, and
J.
Xu
,
CrystEngComm.
13
,
4856
(
2011
).
15.
H.
Wu
,
D.
Lin
, and
W.
Pan
,
Appl. Phys. Lett.
89
,
133125
(
2006
).
16.
S.
Steinhauer
,
E.
Brunet
,
T.
Maier
,
G. C.
Mutinati
,
A.
Köck
,
O.
Freudenberg
,
C.
Gspan
,
W.
Grogger
,
A.
Neuhold
, and
R.
Resel
,
Sens. Actuators, B
187
,
50
(
2013
).
17.
D. D.
Li
,
J.
Hu
,
R. Q.
Wu
, and
J. G.
Lu
,
Nanotechnology
21
,
485502
(
2010
).
18.
L.
Liao
,
Z.
Zhang
,
B.
Yan
,
Z.
Zheng
,
Q. L.
Bao
,
T.
Wu
,
C. M.
Li
,
Z. X.
Shen
,
J. X.
Zhang
,
H.
Gong
,
J. C.
Li
, and
T.
Yu
,
Nanotechnology
20
,
085203
(
2009
).
19.
J.
Huang
,
Y.
Zhu
,
X.
Yang
,
W.
Chen
,
Y.
Zhou
, and
C.
Li
,
Nanoscale
7
,
559
(
2015
).
20.
S.
Sun
,
X.
Zhang
,
Y.
Sun
,
S.
Yang
,
X.
Song
, and
Z.
Yang
,
Phys. Chem. Chem. Phys.
15
,
10904
(
2013
).
21.
Z. H.
Ibupoto
,
K.
Khun
,
J.
Lu
, and
M.
Willander
,
Appl. Phys. Lett.
102
,
103701
(
2013
).
22.
Q.
Zhang
,
D.
Xu
,
X.
Zhou
,
X.
Wu
, and
K.
Zhang
,
Small
10
,
935
(
2014
).
23.
R.
Sahay
,
P. S.
Kumar
,
V.
Aravindan
,
J.
Sundaramurthy
,
W. C.
Ling
,
S. G.
Mhaisalkar
,
S.
Ramakrishna
, and
S.
Madhavi
,
J. Phys. Chem. C
116
,
18087
(
2012
).
24.
F.-S.
Ke
,
L.
Huang
,
G.-Z.
Wei
,
L.-J.
Xue
,
J.-T.
Li
,
B.
Zhang
,
S.-R.
Chen
,
X.-Y.
Fan
, and
S.-G.
Sun
,
Electrochim. Acta
54
,
5825
(
2009
).
25.
Y.
Xia
,
X.
Pu
,
J.
Liu
,
J.
Liang
,
P.
Liu
,
X.
Li
, and
X.
Yu
,
J. Mater. Chem. A
2
,
6796
(
2014
).
26.
S. K.
Kumar
,
S.
Suresh
,
S.
Murugesan
, and
S. P.
Raj
,
Sol. Energy
94
,
299
(
2013
).
27.
Z.
Fan
,
X.
Fan
,
A.
Li
, and
L.
Dong
,
Nanoscale
5
,
12310
(
2013
).
28.
Y.-M.
Juan
,
H.-T.
Hsueh
,
T.-C.
Cheng
,
C.-W.
Wu
, and
S.-J.
Chang
,
ECS Solid State Lett.
3
,
P30
(
2014
).
29.
Y. W.
Zhu
,
T.
Yu
,
F. C.
Cheong
,
X. J.
Xu
,
C. T.
Lim
,
V. B. C.
Tan
,
J. T. L.
Thong
, and
C. H.
Sow
,
Nanotechnology
16
,
88
(
2005
).
30.
P. R.
Shao
,
S. Z.
Deng
,
J.
Chen
,
J.
Chen
, and
N. S.
Xu
,
J. Appl. Phys.
109
,
023710
(
2011
).
31.
B. J.
Hansen
,
N.
Kouklin
,
G.
Lu
,
I.-K.
Lin
,
J.
Chen
, and
X.
Zhan
,
J. Phys. Chem. C
114
,
2440
(
2010
).
32.
J.
Wu
,
B.
Yin
,
F.
Wu
,
Y.
Myung
, and
P.
Banerjee
,
Appl. Phys. Lett.
105
,
183506
(
2014
).
33.
Y.
Cheng
,
P.
Xiong
,
L.
Fields
,
J. P.
Zheng
,
R. S.
Yang
, and
Z. L.
Wang
,
Appl. Phys. Lett.
89
,
093114
(
2006
).
34.
M. H.
Yang
,
K. B. K.
Teo
,
W. I.
Milne
, and
D. G.
Hasko
,
Appl. Phys. Lett.
87
,
253116
(
2005
).
35.
G.
Filipic
and
U.
Cvelbar
,
Nanotechnology
23
,
194001
(
2012
).
36.
F.
Mumm
,
K. M.
Beckwith
,
S.
Bonde
,
K. L.
Martinez
, and
P.
Sikorski
,
Small
9
,
263
(
2013
).
37.
A. M. B.
Goncalves
,
L. C.
Campos
,
A. S.
Ferlauto
, and
R. G.
Lacerda
,
J. Appl. Phys.
106
,
034303
(
2009
).
38.
J.
Wang
,
L.
Li
,
D.
Xiong
,
R.
Wang
,
D.
Zhao
,
C.
Min
,
Y.
Yu
, and
L.
Ma
,
Nanotechnology
18
,
075705
(
2007
).
39.
Z.
Zhang
,
K.
Yao
,
Y.
Liu
,
C.
Jin
,
H.
Liang
,
Q.
Chen
, and
L.-M.
Peng
,
Adv. Funct. Mater.
17
,
2478
(
2007
).
40.
Y.
Peng
,
J.
Zheng
,
P.
Wu
, and
J.
Wang
,
J. Appl. Phys.
116
,
163704
(
2014
).
41.
L.
Li
,
S.
Yang
,
X.
Zhang
,
L.
Wang
,
Z.
Jiang
,
Q.
Lin
,
C.
Wang
,
F.
Han
, and
N.
Peng
,
Microelectron. Eng.
126
,
27
(
2014
).
42.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
, 3rd ed. (
Wiley
,
USA
,
2007
).
43.
M.
Pollak
and
B.
Shklovskii
,
Hopping Transport in Solids (Modern Problems in Condensed Matter Sciences
) (
Elsevier
,
Amsterdam, New York, Canada, USA
,
1991
).
44.
H. B.
Michaelson
,
J. Appl. Phys.
48
,
4729
(
1977
).
45.
A.
Zainelabdin
,
S.
Zaman
,
G.
Amin
,
O.
Nur
, and
M.
Willander
,
Appl Phys A
108
,
921
(
2012
).
You do not currently have access to this content.