With the consideration of photon recycling effect, the efficiency limit of methylammonium lead iodide (CH3NH3PbI3) perovskite solar cells is predicted by a detailed balance model. To obtain convincing predictions, both AM 1.5 spectrum of Sun and experimentally measured complex refractive index of perovskite material are employed in the detailed balance model. The roles of light trapping and angular restriction in improving the maximal output power of thin-film perovskite solar cells are also clarified. The efficiency limit of perovskite cells (without the angular restriction) is about 31%, which approaches to Shockley-Queisser limit (33%) achievable by gallium arsenide (GaAs) cells. Moreover, the Shockley-Queisser limit could be reached with a 200 nm-thick perovskite solar cell, through integrating a wavelength-dependent angular-restriction design with a textured light-trapping structure. Additionally, the influence of the trap-assisted nonradiative recombination on the device efficiency is investigated. The work is fundamentally important to high-performance perovskite photovoltaics.

1.
M. A.
Green
,
A.
Ho-Baillie
, and
H. J.
Snaith
,
Nat. Photonics
8
(
7
),
506
514
(
2014
).
2.
H. S.
Kim
,
C. R.
Lee
,
J. H.
Im
,
K. B.
Lee
,
T.
Moehl
,
A.
Marchioro
,
S. J.
Moon
,
R.
Humphry-Baker
,
J. H.
Yum
,
J. E.
Moser
,
M.
Gratzel
, and
N. G.
Park
,
Sci. Rep.
2
,
591
(
2012
).
3.
J.
Burschka
,
N.
Pellet
,
S. J.
Moon
,
R.
Humphry-Baker
,
P.
Gao
,
M. K.
Nazeeruddin
, and
M.
Gratzel
,
Nature
499
(
7458
),
316
319
(
2013
).
4.
M. Z.
Liu
,
M. B.
Johnston
, and
H. J.
Snaith
,
Nature
501
(
7467
),
395
398
(
2013
).
5.
C.
Wehrenfennig
,
G. E.
Eperon
,
M. B.
Johnston
,
H. J.
Snaith
, and
L. M.
Herz
,
Adv. Mater.
26
(
10
),
1584
1589
(
2014
).
6.
S. D.
Stranks
,
G. E.
Eperon
,
G.
Grancini
,
C.
Menelaou
,
M. J. P.
Alcocer
,
T.
Leijtens
,
L. M.
Herz
,
A.
Petrozza
, and
H. J.
Snaith
,
Science
342
(
6156
),
341
344
(
2013
).
7.
G. C.
Xing
,
N.
Mathews
,
S. Y.
Sun
,
S. S.
Lim
,
Y. M.
Lam
,
M.
Gratzel
,
S.
Mhaisalkar
, and
T. C.
Sum
,
Science
342
(
6156
),
344
347
(
2013
).
8.
D.
Shi
,
V.
Adinolfi
,
R.
Comin
,
M. J.
Yuan
,
E.
Alarousu
,
A.
Buin
,
Y.
Chen
,
S.
Hoogland
,
A.
Rothenberger
,
K.
Katsiev
,
Y.
Losovyj
,
X.
Zhang
,
P. A.
Dowben
,
O. F.
Mohammed
,
E. H.
Sargent
, and
O. M.
Bakr
,
Science
347
(
6221
),
519
522
(
2015
).
9.
G. C.
Xing
,
N.
Mathews
,
S. S.
Lim
,
N.
Yantara
,
X. F.
Liu
,
D.
Sabba
,
M.
Gratzel
,
S.
Mhaisalkar
, and
T. C.
Sum
,
Nat. Mater.
13
(
5
),
476
480
(
2014
).
10.
N. G.
Park
,
Mater. Today
18
(
2
),
65
72
(
2015
).
11.
W.
Shockley
and
H. J.
Queisser
,
J. Appl. Phys.
32
(
3
),
510
(
1961
).
12.
A.
Devos
,
J. Phys. D: Appl. Phys.
13
(
5
),
839
846
(
1980
).
13.
T.
Tiedje
,
E.
Yablonovitch
,
G. D.
Cody
, and
B. G.
Brooks
,
IEEE Trans. Electron Devices
31
(
5
),
711
716
(
1984
).
14.
U.
Rau
and
R.
Brendel
,
J. Appl. Phys.
84
(
11
),
6412
6418
(
1998
).
15.
A. S.
Brown
and
M. A.
Green
,
Physica E
14
(
1–2
),
96
100
(
2002
).
16.
V. I.
Klimov
,
Appl. Phys. Lett.
89
(
12
),
123118
(
2006
).
17.
T.
Kirchartz
,
J.
Mattheis
, and
U.
Rau
,
Phys. Rev. B
78
(
23
),
235320
(
2008
).
18.
H. J.
Queisser
,
Mater. Sci. Eng., B
159–160
,
322
328
(
2009
).
19.
C. C.
Lin
,
W. L.
Liu
, and
C. Y.
Shih
,
Opt. Express
19
(
18
),
16927
16933
(
2011
).
20.
T.
Nozawa
and
Y.
Arakawa
,
Appl. Phys. Lett.
98
(
17
),
171108
(
2011
).
21.
Y.
Ahn
,
Y. H.
Kim
, and
S. I.
Kim
,
IEEE J. Photovoltaics
3
(
4
),
1403
1408
(
2013
).
22.
23.
S.
Sandhu
,
Z. F.
Yu
, and
S. H.
Fan
,
Opt. Express
21
(
1
),
1209
1217
(
2013
).
24.
D. T.
Moore
,
B.
Gaskey
,
A.
Robbins
, and
T.
Hanrath
,
J. Appl. Phys.
115
(
5
),
054313
(
2014
).
25.
S.
Sandhu
,
Z. F.
Yu
, and
S. H.
Fan
,
Nano Lett.
14
(
2
),
1011
1015
(
2014
).
26.
X.
Zhai
,
S.
Wu
,
A.
Shang
, and
X.
Li
,
Appl. Phys. Lett.
106
(
6
),
063904
(
2015
).
27.
K.
Tvingstedt
,
O.
Malinkiewicz
,
A.
Baumann
,
C.
Deibel
,
H. J.
Snaith
,
V.
Dyakonov
, and
H. J.
Bolink
,
Sci. Rep.
4
,
6071
(
2014
).
28.
A.
Marti
,
J. L.
Balenzategui
, and
R. F.
Reyna
,
J. Appl. Phys.
82
(
8
),
4067
4075
(
1997
).
29.
O. D.
Miller
,
E.
Yablonovitch
, and
S. R.
Kurtz
,
IEEE J. Photovoltaics
2
(
3
),
303
311
(
2012
).
30.
A.
Braun
,
E. A.
Katz
,
D.
Feuermann
,
B. M.
Kayes
, and
J. M.
Gordon
,
Energy Environ. Sci.
6
(
5
),
1499
1503
(
2013
).
31.
E. D.
Kosten
,
J. H.
Atwater
,
J.
Parsons
,
A.
Polman
, and
H. A.
Atwater
,
Light: Sci. Appl.
2
,
e45
(
2013
).
32.
O.
Hohn
,
T.
Kraus
,
G.
Bauhuis
,
U. T.
Schwarz
, and
B.
Blasi
,
Opt. Express
22
(
9
),
A715
A722
(
2014
).
33.
X.
Sheng
,
M. H.
Yun
,
C.
Zhang
,
A. M.
Al-Okaily
,
M.
Masouraki
,
L.
Shen
,
S. D.
Wang
,
W. L.
Wilson
,
J. Y.
Kim
,
P.
Ferreira
,
X. L.
Li
,
E.
Yablonovitch
, and
J. A.
Rogers
,
Adv. Energy Mater.
5
(
1
),
1400919
(
2015
).
34.
H. R.
Stuart
and
D. G.
Hall
,
J. Opt. Soc. Am. A
14
(
11
),
3001
3008
(
1997
).
35.
P.
Loper
,
M.
Stuckelberger
,
B.
Niesen
,
J.
Werner
,
M.
Filipic
,
S. J.
Moon
,
J. H.
Yum
,
M.
Topic
,
S.
De Wolf
, and
C.
Ballif
,
J. Phys. Chem. Lett.
6
(
1
),
66
71
(
2015
).
36.
See supplementary material at http://dx.doi.org/10.1063/1.4922150 for refractive index of perovskite material and nonradiative recombination incorporated detailed balance model.
37.
D. M.
Callahan
,
J. N.
Munday
, and
H. A.
Atwater
,
Nano Lett.
12
(
1
),
214
218
(
2012
).
38.
Z. F.
Yu
,
A.
Raman
, and
S. H.
Fan
,
Proc. Natl. Acad. Sci. U. S. A.
107
(
41
),
17491
17496
(
2010
).
39.
M. A.
Green
, in
Solar Energy: The State of the Art
, edited by
J.
Gordon
(
James & James (Science Publishers)
,
2001
), Vol. 6.
40.
G. J. A. H.
Wetzelaer
,
M.
Scheepers
,
A. M.
Sempere
,
C.
Momblona
,
J.
Avila
, and
H. J.
Bolink
,
Adv. Mater.
27
(
11
),
1837
1841
(
2015
).
41.
O.
Hohn
,
T.
Kraus
,
U. T.
Schwarz
, and
B.
Blasi
,
J. Appl. Phys.
117
(
3
),
034503
(
2015
).
42.
Y.
Yamada
,
T.
Nakamura
,
M.
Endo
,
A.
Wakamiya
, and
Y.
Kanemitsu
,
J. Am. Chem. Soc.
136
(
33
),
11610
11613
(
2014
).

Supplementary Material

You do not currently have access to this content.