Attainment of magnetic order in nanoparticles at room temperature is an issue of critical importance for many different technologies. For ordinary ferromagnetic materials, a reduction in size leads to decreased magnetic anisotropy and results in superparamagnetic relaxations. If, instead, anisotropy could be enhanced at reduced particle sizes, then it would be possible to attain stable magnetic order at room temperature. Herein, we provide experimental evidence substantiating the synthesis of a cobalt iron carbide phase (CoFe2C) of nanoparticles. Structural characterization of the CoFe2C carbide phase was performed by transmission electron microscopy, electron diffraction and energy electron spectroscopy. X-ray diffraction was also performed as a complimentary analysis. Magnetic characterization of the carbide phase revealed a blocking temperature, TB, of 790 K for particles with a domain size as small as 5 ± 1 nm. The particles have magnetocrystalline anisotropy of 4.6 ± 2 × 106 J/m3, which is ten times larger than that of Co nanoparticles. Such colossal anisotropy leads to thermally stable long range magnetic order. Moreover, the thermal stability constant is much larger than that of the commonly used FePt nanoparticles. With thermal stability and colossal anisotropy, the CoFe2C nanoparticles have huge potential for enhanced magnetic data storage devices.

1.
A. A.
El-Gendy
,
M.
Qian
,
Z. J.
Huba
,
S. N.
Khanna
, and
E. E.
Carpenter
,
Appl. Phys. Lett.
104
,
023111
(
2014
).
2.
M.
Qian
and
S. N.
Khanna
,
J. Appl. Phys.
114
,
243909
(
2013
).
3.
H.
Kuramochi
,
H.
Akinaga
,
Y.
Semba
,
M.
Kijima
,
T.
Uzumaki
,
M.
Yasutake
,
A.
Tanaka
, and
H.
Yokoyama
,
Jpn. J. Appl. Phys.
44
,
2077
(
2005
).
4.
A. A.
El-Gendy
,
E. M. M.
Ibrahim
,
V. O.
Khavrus
,
Y.
Krupskaya
,
S.
Hampel
,
A.
Leonhardt
,
B.
Büchner
, and
R.
Klingeler
,
Carbon
47
,
2821
(
2009
).
5.
H.
Wang
,
S. P.
Wong
,
W. Y.
Cheung
,
N.
Ke
,
M. F.
Chiah
,
H.
Liu
, and
X. X.
Zhang
,
J. Appl. Phys.
88
,
2063
(
2000
).
6.
J. J.
Delaunay
,
T.
Hayashi
,
M.
Tomita
,
S.
Hirono
, and
S.
Umemura
,
Appl. Phys. Lett.
71
,
3427
(
1997
).
7.
A. A.
El-Gendy
,
T.
Almuigateeb
, and
E. E.
Carpenter
,
J. Magn. Magn. Mater.
348
,
136
(
2013
).
8.
P. P.
Cowburn
and
M. E.
Welland
,
Science
287
,
1466
(
2000
).
9.
G.
Csaba
,
A.
Imre
,
G. H.
Bernstein
, and
W.
Porod
,
IEEE Trans. Nanotechnol.
1
,
209
(
2002
).
10.
S.
Salahuddin
and
S.
Datta
,
Appl. Phys. Lett.
90
,
093503
(
2007
).
11.
E. C.
Stoner
and
E. P.
Wolfarth
,
Philos. Trans. R. Soc. London, Ser. A
240
,
599
(
1948
).
12.
A. A.
El-Gendy
,
V. O.
Khavrus
,
S.
Hampel
,
A.
Leonhardt
,
B.
Beuchner
, and
R.
Klingeler
,
J. Phys. Chem. C
114
,
10745
(
2010
).
13.
D.
Clifford
,
A. A.
El-Gendy
,
A.
Lu
,
D.
Pestov
, and
E.
Carpenter
,
J. Flow Chem.
4
(
3
),
148
(
2014
).
14.
M. P.
Sharrock
,
J. Appl. Phys.
76
,
6413
(
1994
).
15.
H.
Coufal
,
L.
Dhar
, and
C. D.
Mee
,
MRS Bull.
31
,
374
(
2006
).
16.
S. N.
Piramanayagam
,
Platinum Met. Rev.
65
,
262
(
2012
).
17.
G.
Kresse
and
J.
Furthmuller
,
Phys. Rev. B
54
,
11169
(
1996
).
18.
G.
Kresse
and
J.
Hafner
,
J. Phys. Condens. Matter
6
,
8245
(
1994
).
19.
See supplementary material at http://dx.doi.org/10.1063/1.4921789 for more TEM images and size distribution.

Supplementary Material

You do not currently have access to this content.