High contact resistance between graphene and metal is a major huddle for high performance electronic device applications of graphene. In this work, a method to improve the contact resistance of graphene is investigated by varying the ratio of peripheral length and area of graphene pattern under a metal contact. The contact resistance decreased to 0.8 kΩ·μm from 2.1 kΩ·μm as the peripheral length increased from 312 to 792 μm. This improvement is attributed to the low resistivity of edge-contacted graphene, which is 8.1 × 105 times lower than that of top-contacted graphene.

1.
C. G.
Kang
,
S. K.
Lim
,
S.
Lee
,
S. K.
Lee
,
C.
Cho
,
Y. G.
Lee
,
H. J.
Hwang
,
Y.
Kim
,
H. J.
Choi
,
S. H.
Choe
,
M.-H.
Ham
, and
B. H.
Lee
,
Nanotechnology
24
,
115707
(
2013
).
2.
Y. G.
Lee
,
C. G.
Kang
,
C.
Cho
,
Y.
Kim
,
H. J.
Hwang
, and
B. H.
Lee
,
Carbon
60
,
453
(
2013
).
3.
Y.-K.
Fuh
and
L.-C.
Lien
,
Nanotechnology
24
,
055301
(
2013
).
4.
S.
Lee
,
J.-S.
Yeo
,
Y.
Ji
,
C.
Cho
,
D.-Y.
Kim
,
S.-I.
Na
,
B. H.
Lee
, and
T.
Lee
,
Nanotechnology
23
,
344013
(
2012
).
5.
B.-C.
Huang
,
M.
Zhang
,
Y.
Wang
, and
J.
Woo
,
Appl. Phys. Lett.
99
,
032107
(
2011
).
6.
O.
Balci
and
C.
Kocabas
,
Appl. Phys. Lett.
101
,
243105
(
2012
).
7.
E.
Watanabe
,
A.
Conwill
,
D.
Tsuya
, and
Y.
Koide
,
Diamond Relat. Mater.
24
,
171
(
2012
).
8.
K. N.
Parrish
and
D.
Akinwande
,
Appl. Phys. Lett.
98
,
183505
(
2011
).
9.
C. E.
Malec
,
B.
Elkus
, and
D.
Davidović
,
Solid State Commun.
151
,
1791
(
2011
).
10.
W.
Li
,
Y.
Liang
,
D.
Yu
,
L.
Peng
,
K. P.
Pernstich
,
T.
Shen
,
A. R. H.
Walker
,
G.
Cheng
,
C. A.
Hacker
,
C. A.
Richter
,
Q.
Li
,
D. J.
Gundlach
, and
X.
Liang
,
Appl. Phys. Lett.
102
,
183110
(
2013
).
11.
K.
Nagashio
,
T.
Nishimura
,
K.
Kita
, and
A.
Toriumi
,
IEEE Int. Electron Devices Meet.
2009
,
1
4
.
12.
R.
Golizadeh-Mojarad
and
S.
Datta
,
Phys. Rev. B
79
,
085410
(
2009
).
13.
R.
Ifuku
,
K.
Nagashio
,
T.
Nishimura
, and
A.
Toriumi
,
Appl. Phys. Lett.
103
,
033514
(
2013
).
14.
F.
Xia
,
V.
Perebeinos
,
Y.
Lin
,
Y.
Wu
, and
P.
Avouris
,
Nat. Nanotechnol.
6
,
179
(
2011
).
15.
J. T.
Smith
,
A. D.
Franklin
,
D. B.
Farmer
, and
C. D.
Dimitrakopoulos
,
ACS Nano
7
,
3661
(
2013
).
16.
K.
Nagashio
and
A.
Toriumi
,
Jpn. J. Appl. Phys., Part 1
50
,
070108
(
2011
).
17.
L.
Wang
,
I.
Meric
,
P. Y.
Huang
,
Q.
Gao
,
Y.
Gao
,
H.
Tran
,
T.
Taniguchi
,
K.
Watanabe
,
L. M.
Campos
,
D. A.
Muller
,
J.
Guo
,
P.
Kim
,
J.
Hone
,
K. L.
Shepard
, and
C. R.
Dean
,
Science
342
,
614
(
2013
).
18.
Y.
Taur
and
T. H.
Ning
,
Fundamentals of Modern VLSI Devices
, 2nd ed. (
Cambridge University Press
,
2013
).
19.
N.
Nemec
,
D.
Tománek
, and
G.
Cuniberti
,
Phys. Rev. Lett.
96
,
076802
(
2006
).
20.
Y.
Matsuda
,
W.-Q.
Deng
, and
W. A.
Goddard
,
J. Phys. Chem. C
111
,
11113
(
2007
).
21.
Y.
Matsuda
,
W.-Q.
Deng
, and
W. A.
Goddard
,
J. Phys. Chem. C
114
,
17845
(
2010
).
22.
Y.
Khatami
,
H.
Li
,
C.
Xu
, and
K.
Banerjee
,
IEEE Trans. Electron Devices
59
,
2444
(
2012
).
23.
C. G.
Kang
,
Y. G.
Lee
,
S. K.
Lee
,
E.
Park
,
C.
Cho
,
S. K.
Lim
,
H. J.
Hwang
, and
B. H.
Lee
,
Carbon
53
,
182
(
2013
).
24.
S.
Lee
,
S. K.
Lee
,
C. G.
Kang
,
C.
Cho
,
Y. G.
Lee
,
U.
Jung
, and
B. H.
Lee
, “Graphene transfer in vacuum yielding a high quality graphene,”
Carbon
(submitted).
You do not currently have access to this content.