In this paper, we demonstrate realization of printable radio frequency identification (RFID) antenna by low temperature processing of graphene ink. The required ultra-low resistance is achieved by rolling compression of binder-free graphene laminate. With compression, the conductivity of graphene laminate is increased by more than 50 times compared to that of as-deposited one. Graphene laminate with conductivity of 4.3 × 104 S/m and sheet resistance of 3.8 Ω/sq (with thickness of 6 μm) is presented. Moreover, the formation of graphene laminate from graphene ink reported here is simple and can be carried out in low temperature (100 °C), significantly reducing the fabrication costs. A dipole antenna based on the highly conductive graphene laminate is further patterned and printed on a normal paper to investigate its RF properties. The performance of the graphene laminate antenna is experimentally measured. The measurement results reveal that graphene laminate antenna can provide practically acceptable return loss, gain, bandwidth, and radiation patterns, making it ideal for low cost printed RF applications, such as RFID tags and wearable wireless sensor networks.

1.
V.
Wood
,
M. J.
Panzer
,
J.
Chen
, and
V.
Bulović
,
Adv. Mater.
21
,
2151
(
2009
).
2.
S.
Azoubel
,
S.
Shemesh
, and
S.
Magdassi
,
Nanotechnology
23
,
344003
(
2012
).
3.
J.
Jang
,
J.
Ha
, and
J.
Cho
,
Adv. Mater.
19
,
1772
(
2007
).
4.
L.
Huang
,
Y.
Huang
,
J.
Liang
,
X.
Wan
, and
Y.
Chen
,
Nano Res.
4
,
675
(
2011
).
5.
V.
Dua
,
S. P.
Surwade
,
S.
Ammu
,
S. R.
Agnihotra
,
S.
Jain
,
K. E.
Roberts
, and
S. K.
Manohar
,
Angew. Chem., Int. Ed.
49
,
2154
(
2010
).
6.
S.
Magdassi
,
M.
Grouchko
, and
A.
Kamyshny
,
Materials
3
,
4626
(
2010
).
7.
K. Y.
Shin
,
J. Y.
Hong
, and
J.
Jang
,
Adv. Mater.
23
,
2113
(
2011
).
8.
B.
Schmied
,
J.
Günther
,
C.
Klatt
,
H.
Kober
, and
E.
Raemaekers
,
Adv. Sci. Technol.
60
,
67
(
2009
).
9.
A. M.
Gaikwad
,
G. L.
Whiting
,
D. A.
Steingart
, and
A. C.
Arias
,
Adv. Mater.
23
,
3251
(
2011
).
10.
C. N.
Hoth
,
S. A.
Choulis
,
P.
Schilinsky
, and
C. J.
Brabec
,
Adv. Mater.
19
,
3973
(
2007
).
11.
H. H.
Lee
,
K. S.
Chou
, and
K. C.
Huang
,
Nanotechnology
16
,
2436
(
2005
).
12.
A. G.
Del Mauro
,
R.
Diana
,
I. A.
Grimaldi
,
F.
Loffredo
,
P.
Morvillo
,
F.
Villani
, and
C.
Minarini
,
Polym. Compos.
34
,
1493
(
2013
).
13.
W. R.
Small
and
M. I. H.
Panhuis
,
Small
3
,
1500
(
2007
).
14.
A.
Kamyshny
and
S.
Magdassi
,
Small
10
,
3515
(
2014
).
15.
T. J.
Foley
,
C. E.
Johnson
, and
K. T.
Higa
,
Chem. Mater.
17
,
4086
(
2005
).
16.
S. M.
Richardson-Burns
,
J. L.
Hendricks
,
B.
Foster
,
L. K.
Povlich
,
D. H.
Kim
, and
D. C.
Martin
,
Biomaterials
28
,
1539
(
2007
).
17.
E. B.
Secor
,
P. L.
Prabhumirashi
,
K.
Puntambekar
,
M. L.
Geier
, and
M. C.
Hersam
,
J. Phys. Chem. Lett.
4
,
1347
(
2013
).
18.
F.
Torrisi
,
T.
Hasan
,
W.
Wu
,
Z.
Sun
,
A.
Lombardo
,
T. S.
Kulmala
, and
A. C.
Ferrari
,
ACS Nano
6
,
2992
(
2012
).
19.
D. J.
Finn
,
M.
Lotya
,
G.
Cunningham
,
R. J.
Smith
,
D.
McCloskey
,
J. F.
Donegan
, and
J. N.
Coleman
,
J. Mater. Chem. C
2
,
925
(
2014
).
20.
J.
Li
,
F.
Ye
,
S.
Vaziri
,
M.
Muhammed
,
M. C.
Lemme
, and
M.
Östling
,
Adv. Mater.
25
,
3985
(
2013
).
21.
M.
Lotya
,
P. J.
King
,
U.
Khan
,
S.
De
, and
J. N.
Coleman
,
ACS Nano
4
,
3155
(
2010
).
22.
J. S.
Gomez-Diaz
and
J.
Perruisseau-Carrier
, in
Proceedings of the IEEE International Symposium on Antennas and Propagation (ISAP)
, Nagoya, Japan, 29 October 2012–02 November
2012
, pp.
239
242
.
23.
C. A.
Balanis
,
Antenna Theory: Analysis and Design
(
John Wiley & Sons
,
Hoboken
,
2012
), pp.
60
62
.
24.
C. A.
Balanis
,
Antenna Theory: Analysis and Design
(
John Wiley & Sons
,
Hoboken
,
2012
), pp.
867
868
.
You do not currently have access to this content.