We report a modulation of the in-plane magnetotransport in artificial manganite superlattice [(NdMnO3)n/(SrMnO3)n/(LaMnO3)n]m by varying the layer thickness n while keeping the total thickness of the structure constant. Charge transport in these heterostructures is confined to the interfaces and occurs via variable range hopping. Upon increasing n, the interfacial separation rises, leading to a suppression of the electrostatic screening between carriers of neighboring interfaces and the opening of a Coulomb gap at the Fermi level (EF). The high-field magnetoresistance (MR) is universally negative due to progressive spin alignment. However, at a critical thickness of n = 5 unit cells (u.c.), an exchange field coupling between ferromagnetically ordered interfaces results in positive MR at low magnetic field (H). Our results demonstrate the ability to geometrically tune the electrical transport between regimes dominated by either charge or spin correlations.

1.
H. Y.
Hwang
,
Y.
Iwasa
,
M.
Kawasaki
,
B.
Keimer
,
N.
Nagaosa
, and
Y.
Tokura
,
Nat. Mater.
11
,
103
(
2012
).
2.
J. M.
Mannhart
and
D. G.
Schlom
,
Science
327
,
1607
(
2010
).
3.
Y.
Kozuka
,
M.
Kim
,
C.
Bell
,
B. G.
Kim
,
Y.
Hikita
, and
H. Y.
Hwang
,
Nature
462
,
487
(
2009
).
4.
S. A.
Fedoseev
,
A. V.
Pan
,
S.
Rubanov
,
I. A.
Golovchanskiy
, and
O. V.
Shcherbakova
,
ACS Nano
7
,
286
(
2013
).
5.
J. H.
Lee
,
L.
Fang
,
E.
Vlahos
,
X.
Ke
,
Y. W.
Jung
,
L. F.
Kourkoutis
,
J.-W.
Kim
,
P. J.
Ryan
,
T.
Heeg
,
M.
Roeckerath
,
V.
Goian
,
M.
Bernhagen
,
R.
Uecker
,
P. C.
Hammel
,
K. M.
Rabe
,
S.
Kamba
,
J.
Schubert
,
J. W.
Freeland
,
D. A.
Muller
,
C. J.
Fennie
,
P.
Schiffer
,
V.
Gopalan
,
E.
Johnston-Halperin
, and
D. G.
Schlom
,
Nature
466
,
954
(
2010
).
6.
S.
Thiel
,
G.
Hammerl
,
A.
Schmehl
,
C. W.
Schneider
, and
J.
Mannhart
,
Science
313
,
1942
(
2006
).
7.
K.
Rogdakis
,
J. W.
Seo
,
Z.
Viskadourakis
,
Y.
Wang
,
L. F. N.
Ah Qune
,
E.
Choi
,
J. D.
Burton
,
E. Y.
Tsymbal
,
J.
Lee
, and
C.
Panagopoulos
,
Nat. Commun.
3
,
1064
(
2012
).
8.
A.
Brinkman
,
M.
Huijben
,
M.
van Zalk
,
J.
Huijben
,
U.
Zeitler
,
J. C.
Maan
,
W. G.
van der Wiel
,
G.
Rijnders
,
D. H. A.
Blank
, and
H.
Hilgenkamp
,
Nat. Mater.
6
,
493
(
2007
).
9.
J. W.
Seo
,
B. T.
Phan
,
J.
Stahn
,
J.
Lee
, and
C.
Panagopoulos
,
Phys. Rev. B.
82
,
140405 (R)
(
2010
).
10.
M. N.
Baibich
,
J. M.
Broto
,
A.
Fert
,
F.
Nguyen Van Dau
, and
F.
Petroff
,
Phys. Rev. Lett.
61
,
2472
(
1988
);
[PubMed]
G.
Binash
,
P.
Grónberg
,
F.
Saurenbach
, and
W.
Zinn
,
Phys. Rev. B
39
,
4828
(
1989
).
11.
S. S. P.
Parkin
,
C.
Kaiser
,
A.
Panchula
,
P. M.
Rice
, and
B.
Hughes
,
Nat. Mater.
3
,
862
(
2004
);
[PubMed]
S.
Yuasa
,
T.
Nagahama
,
A.
Fukushima
,
Y.
Suzuki
, and
K.
Ando
,
Nat. Mater.
3
,
868
(
2004
).
[PubMed]
12.
G.
Logvenov
,
A.
Gozar
, and
I.
Bozovic
,
Science
326
,
699
(
2009
).
13.
A.
Ohtomo
and
H. Y.
Hwang
,
Nature
427
,
423
(
2004
).
14.
W.
Eerensterin
,
N. D.
Mathur
, and
J. F.
Scott
,
Nature
442
,
759
(
2006
).
15.
J. M. D.
Coey
,
M.
Viret
, and
S.
von Molnaír
,
Adv. Phys.
48
,
167
(
1999
).
16.
C.
Lin
and
A. J.
Millis
,
Phys. Rev. B
78
,
184405
(
2008
).
17.
K.
Lee
,
J.
Lee
, and
J.
Kim
,
J. Korean Phys. Soc.
46
(
1
),
112
(
2005
).
18.
See supplementary material at http://dx.doi.org/10.1063/1.4906347 for details on the material growth, and structural, magnetic, and electrical characterizations.
19.
A.
Bhattacharya
,
X.
Zhai
,
M.
Warusawithana
,
J. N.
Eckstein
, and
S. D.
Bader
,
Appl. Phys. Lett.
90
,
222503
(
2007
).
20.
A.
Bhattacharya
,
S. J.
May
,
S. G. E.
Velthuis
,
M.
Warusawithana
,
X.
Zhai
,
B.
Jiang
,
J.-M.
Zuo
,
M. R.
Fitzsimmons
,
S. D.
Bader
, and
J. N.
Eckstein
,
Phys. Rev. Lett.
100
,
257203
(
2008
).
21.
H.
Yamada
,
P.
Xiang
, and
A.
Sawa
,
Phys. Rev. B
81
,
014410
(
2010
).
22.
C.
Adamo
,
C. A.
Perroni
,
V.
Cataudella
,
G.
De Filippis
,
P.
Orgiani
, and
L.
Mariato
,
Phys Rev. B
79
,
045125
(
2009
).
23.
24.
B.
Shklovskii
and
A.
Efros
,
Electronic Properties of Doped Semiconductors
(
Springer-Verlag
,
Berlin
,
1984
).
25.
J. M. D.
Coey
,
M.
Viret
,
L.
Ranno
, and
K.
Ounadjela
,
Phys. Rev. Lett.
75
,
3910
(
1995
).
26.
R.
Rosenbaum
,
Phys. Rev. B
44
,
3599
(
1991
).
27.
28.

We chose this data-set to attempt a polaron hopping fit since its low VRH exponent and the narrow interfacial spacing suggest that it is our closest-lying SL to the bulk 3D samples in which polaronic transport has previously been observed.14 

29.

A crossover from 3-D VRH to ES-VRH has previously been observed for (SrMnO3)n/(LaMnO3)2n bilayers upon increasing the layer thickness.21 However, the metallic behaviour typically exhibited by the thinnest SLs (Refs. 18, 19, and 21) indicates that 3D-VRH transport is a result of bulk conduction. In contrast, our observation of a 2D to ES VRH crossover upon increasing n confirms that the electrical transport is purely interfacial in our SLs.

30.
M. E.
Raikh
,
Solid State Commun.
75
,
935
(
1990
);
B.
Capoen
,
G.
Biskupski
, and
A.
Briggs
,
Solid State Commun.
113
,
135
(
1999
).
31.
K. R.
Nikolaev
,
A.
Yu. Dobin
,
I. N.
Krivorotov
,
W. K.
Cooley
,
A.
Bhattacharya
,
A. L.
Kobrinskii
,
L. I.
Glazman
,
R. M.
Wentzovitch
,
E.
Dan Dahlberg
, and
A. M.
Goldman
,
Phys. Rev. Lett.
85
,
3728
(
2000
).
32.
I. N.
Krivorotov
,
K. R.
Nikolaev
,
A.
Yu. Dobin
,
A. M.
Goldman
, and
E.
Dan Dahlberg
,
Phys. Rev. Lett.
86
,
5779
(
2001
).
33.
M.
Ziese
,
E.
Pippel
,
E.
Nikulina
,
M.
Arredondo
, and
I.
Vrejoiu
,
Nanotechnology
22
,
254025
(
2011
).

Supplementary Material

You do not currently have access to this content.