Here, we report on the electrical characterization of phase change memory cells containing a Ge3Sb2Te6 (GST) alloy grown in its crystalline form by Molecular Beam Epitaxy (MBE). It is found that the high temperature growth on the amorphous substrate results in a polycrystalline film exhibiting a rough surface with a grain size of approximately 80–150 nm. A detailed electrical characterization has been performed, including I-V characteristic curves, programming curves, set operation performance, crystallization activation at low temperature, and resistance drift, in order to determine the material related parameters. The results indicate very good alignment of the electrical parameters with the current state-of-the-art GST, deposited by physical vapor deposition. Such alignment enables a possible employment of the MBE deposition technique for chalcogenide materials in the phase change memory technology, thus leading to future studies of as-deposited crystalline chalcogenides as integrated in electrical vehicles.

1.
S.
Raoux
,
W.
Wełnic
, and
D.
Ielmini
,
Chem. Rev.
110
,
240
(
2010
).
2.
M.
Wuttig
and
N.
Yamada
,
Nat. Mater.
6
,
824
(
2007
).
3.
G. W.
Burr
,
M. J.
Breitwisch
,
M.
Franceschini
,
D.
Garetto
,
K.
Gopalakrishnan
,
B.
Jackson
,
B.
Kurdi
,
C.
Lam
,
L. A.
Lastras
,
A.
Padilla
,
B.
Rajendran
,
S.
Raoux
, and
R. S.
Shenoy
,
J. Vac. Sci. Technol. B
28
,
223
(
2010
).
4.
A.
Pirovano
,
A.
Redaelli
,
F.
Pellizzer
,
F.
Ottogalli
,
M.
Tosi
,
D.
Ielmini
,
A. L.
Lacaita
, and
R.
Bez
,
IEEE Trans. Device Mater. Reliab.
4
,
422
(
2004
).
5.
A.
Abrutis
,
V.
Plausinaitiene
,
M.
Skapas
,
C.
Wiemer
,
O.
Salicio
,
M.
Longo
,
A.
Pirovano
,
J.
Siegel
,
W.
Gawelda
,
S.
Rushworth
, and
C.
Giesen
,
Microelectron. Eng.
85
,
2338
(
2008
).
6.
T.
Eom
,
S.
Choi
,
B. J.
Choi
,
M. H.
Lee
,
T.
Gwon
,
S. H.
Rha
,
W.
Lee
,
M.-S.
Kim
,
M.
Xiao
,
I.
Buchanan
,
D.-Y.
Cho
, and
C. S.
Hwang
,
Chem. Mater.
24
,
2099
(
2012
).
7.
R. E.
Simpson
,
P.
Fons
,
A. V.
Kolobov
,
T.
Fukaya
,
M.
Krbal
,
T.
Yagi
, and
J.
Tominaga
,
Nat. Nanotechnol.
6
,
501
(
2011
).
8.
P.
Rodenbach
,
R.
Calarco
,
K.
Perumal
,
F.
Katmis
,
M.
Hanke
,
A.
Proessdorf
,
W.
Braun
,
A.
Giussani
,
A.
Trampert
,
H.
Riechert
,
P.
Fons
, and
A. V.
Kolobov
,
Phys. Status Solidi-Rapid Res. Lett.
6
,
415
(
2012
).
9.
P.
Rodenbach
,
A.
Giussani
,
K.
Perumal
,
M.
Hanke
,
M.
Dubslaff
,
H.
Riechert
,
R.
Calarco
,
M.
Burghammer
,
A. V.
Kolobov
, and
P.
Fons
,
Appl. Phys. Lett.
101
,
061903
(
2012
).
10.
C.
Pauly
,
M.
Liebmann
,
A.
Giussani
,
J.
Kellner
,
S.
Just
,
J.
Sánchez-Barriga
,
E.
Rienks
,
O.
Rader
,
R.
Calarco
,
G.
Bihlmayer
, and
M.
Morgenstern
,
Appl. Phys. Lett.
103
,
243109
(
2013
).
11.
F.
Katmis
,
R.
Calarco
,
K.
Perumal
,
P.
Rodenbach
,
A.
Giussani
,
M.
Hanke
,
A.
Proessdorf
,
A.
Trampert
,
F.
Grosse
,
R.
Shayduk
,
R.
Campion
,
W.
Braun
, and
H.
Riechert
,
Cryst. Growth Des.
11
,
4606
(
2011
).
12.
F.
Katmis
,
M.
Schmidbauer
,
S. M.
Bokoch
,
P.
Rodenbach
,
H.
Riechert
, and
R.
Calarco
,
Phys. Status Solidi
251
,
769
(
2014
).
13.
K.
Perumal
,
W.
Braun
,
H.
Riechert
, and
R.
Calarco
,
J. Cryst. Growth
396
,
50
(
2014
).
14.
D.
Ielmini
,
A. L.
Lacaita
, and
D.
Mantegazza
,
IEEE Trans. Electron Devices
54
,
308
(
2007
).
15.
G.
Servalli
,
IEEE Int. Electron Devices Meet.
2009
,
113
.
16.
M.
Boniardi
,
D.
Ielmini
,
I.
Tortorelli
,
A.
Redaelli
,
A.
Pirovano
,
M.
Allegra
,
M.
Magistretti
,
C.
Bresolin
,
D.
Erbetta
,
A.
Modelli
,
E.
Varesi
,
F.
Pellizzer
,
A. L.
Lacaita
, and
R.
Bez
,
Solid. State. Electron.
58
,
11
(
2011
).
17.
A.
Redaelli
,
A.
Pirovano
,
I.
Tortorelli
,
D.
Ielmini
, and
A. L.
Lacaita
,
IEEE Electron Device Lett.
29
,
41
(
2008
).
18.
D.
Ielmini
and
M.
Boniardi
,
Appl. Phys. Lett.
94
,
091906
(
2009
).
19.
D.
Ielmini
,
D.
Sharma
,
S.
Lavizzari
, and
A. L.
Lacaita
,
IEEE Trans. Electron Devices
56
,
1070
(
2009
).
20.
M.
Boniardi
and
D.
Ielmini
,
Appl. Phys. Lett.
98
,
243506
(
2011
).
You do not currently have access to this content.