We establish a solid basis for the interpretation of infrared near-field spectra of thin organic films on highly reflective substrates and provide guidelines for their straightforward comparison to standard far-field Fourier transform infrared (FTIR) spectra. Particularly, we study the spectral behavior of near-field absorption and near-field phase, both quantities signifying the presence of a molecular resonance. We demonstrate that the near-field phase spectra only weakly depend on the film thickness and can be used for an approximate comparison with grazing incidence FTIR (GI-FTIR) spectra. In contrast, the near-field absorption spectra can be compared more precisely with far-field spectra: for ultrathin films they match well GI-FTIR spectra, while for thick films a good agreement with standard transmission FTIR spectra is found. Our results are based on experimental data obtained by nanoscale FTIR (nano-FTIR) spectroscopy and supported by a comprehensive theoretical analysis.

1.
F.
Keilmann
and
R.
Hillenbrand
,
Nano-Optics and Near-Field Optical Microscopy
, edited by
D.
Richards
and
A.
Zayats
(
Artech House
,
Boston/London
,
2009
).
2.
S.
Amarie
,
T.
Ganz
, and
F.
Keilmann
,
Opt. Express
17
,
21794
(
2009
).
3.
F.
Huth
,
M.
Schnell
,
J.
Willborn
,
N.
Ocelic
, and
R.
Hillenbrand
,
Nat. Mater.
10
,
352
(
2011
).
4.
F.
Huth
,
A. A.
Govyadinov
,
S.
Amarie
,
W.
Nuansing
,
F.
Keilmann
, and
R.
Hillenbrand
,
Nano Lett.
12
,
3973
(
2012
).
5.
B.
Knoll
and
F.
Keilmann
,
Nature
399
,
134
(
1999
).
6.
R.
Hillenbrand
,
T.
Taubner
, and
F.
Keilmann
,
Nature
418
,
159
(
2002
).
7.
T.
Taubner
,
R.
Hillenbrand
, and
F.
Keilmann
,
Appl. Phys. Lett.
85
,
5064
(
2004
).
8.
M.
Brehm
,
T.
Taubner
,
R.
Hillenbrand
, and
F.
Keilmann
,
Nano Lett.
6
,
1307
(
2006
).
9.
S. H.
Kehr
,
M.
Cebula
,
O.
Mieth
,
T.
Härtling
,
J.
Seidel
,
S.
Grafström
, and
L. M.
Eng
,
Phys. Rev. Lett.
100
,
256403
(
2008
).
10.
G.
Wollny
,
E.
Bründermann
,
Z.
Arsov
,
L.
Quaroni
, and
M.
Havenith
,
Opt. Express
16
,
7453
(
2008
).
11.
M.
Paulite
,
Z.
Fakhraai
,
I. T. S.
Li
,
N.
Gunari
,
A. E.
Tanur
, and
G. C.
Walker
,
J. Am. Chem. Soc.
133
,
7376
(
2011
).
12.
K.
Mueller
,
X.
Yang
,
M.
Paulite
,
Z.
Fakhraai
,
N.
Gunari
, and
G. C.
Walker
,
Langmuir
24
,
6946
(
2008
).
13.
X. G.
Xu
,
A. E.
Tanur
, and
G. C.
Walker
,
J. Phys. Chem. A
117
,
3348
(
2013
).
14.
L. M.
Zhang
,
G. O.
Andreev
,
Z.
Fei
,
A. S.
McLeod
,
G.
Dominguez
,
M.
Thiemens
,
A. H.
Castro-Neto
,
D. N.
Basov
, and
M. M.
Fogler
,
Phys. Rev. B
85
,
075419
(
2012
).
15.
S.
Bergweger
,
D. M.
Nguyen
,
E. A.
Muller
,
H. A.
Bechtel
,
T. T.
Perkins
, and
M. B.
Raschke
,
J. Am. Chem. Soc.
135
,
18292
(
2013
).
16.

In contrast to standard FTIR, the sample is located in one of the interferometer arms.

17.
I.
Amenabar
,
S.
Poly
,
W.
Nuansing
,
E. H.
Hubrich
,
A. A.
Govyadinov
,
F.
Huth
,
R.
Krutohvostovs
,
L.
Zhang
,
M.
Knez
,
J.
Heberle
,
A. M.
Bittner
, and
R.
Hillenbrand
,
Nat. Commun.
4
,
2890
(
2013
).
18.
P.
Hermann
,
A.
Hoehl
,
G.
Ulrich
,
C.
Fleischmann
,
A.
Hermelink
,
B.
Kästner
,
P.
Patoka
,
A.
Hornemann
,
B.
Beckhoff
,
E.
Rühl
, and
G.
Ulm
,
Opt. Express
22
,
17948
(
2014
).
19.
X. G.
Xu
,
M.
Rang
,
I. M.
Craig
, and
M. B.
Raschke
,
J. Phys. Chem. Lett.
3
,
1836
(
2012
).
20.
B.
Pollard
,
E. A.
Muller
,
K.
Hinrichs
, and
M. B.
Raschke
,
Nat. Commun.
5
,
3587
(
2014
).
21.
P. R.
Griffith
and
J. A.
De Haseth
,
Fourier Transform Infrared Spectroscopy
(
Wiley
,
New York
,
2007
).
22.
A. A.
Govyadinov
,
I.
Amenabar
,
F.
Huth
,
P. S.
Carney
, and
R.
Hillenbrand
,
J. Phys. Chem. Lett.
4
,
1526
(
2013
).
23.
C.
Westermeier
,
A.
Cernescu
,
S.
Amarie
,
C.
Liewald
,
F.
Keilmann
, and
B.
Nickel
,
Nat. Commun.
5
,
4101
(
2014
).
24.
A.
Cvitkovic
,
N.
Ocelic
,
J.
Aizpurua
,
R.
Guckenberger
, and
R.
Hillenbrand
,
Phys. Rev. Lett.
97
,
060801
(
2006
).
25.
J.
Aizpurua
,
T.
Taubner
,
F. J.
García de Abajo
,
M.
Brehm
, and
R.
Hillenbrand
,
Opt. Express
16
,
1529
(
2008
).
26.
M.
Schnell
,
P. S.
Carney
, and
R.
Hillenbrand
,
Nat. Commun.
5
,
3499
(
2014
).
27.

While the sample is scanned, the tip-scattered radiation is superimposed at the detector with a reference wave with a linear-in-time changing phase. Recording of the detector signal pixel-by-pixel yields a synthetic hologram, in which the near-field amplitude and phase are encoded. The near-field amplitude and phase images are reconstructed by standard digital holography processing.

28.
N.
Behr
and
M. B.
Raschke
,
J. Phys. Chem. C
112
,
3766
(
2008
).
29.
J. D.
Jackson
,
Classical Electrodynamics
(
Wiley
,
New York
,
1999
).
30.
A.
Cvitkovic
,
N.
Ocelic
, and
R.
Hillenbrand
,
Opt. Express
15
,
8550
(
2007
).
31.
M.
Esslingen
and
R.
Vogelgesang
,
ACS Nano
6
,
8173
(
2012
).
32.
A. A.
Govyadinov
,
S.
Mastel
,
F.
Golmar
,
A.
Chuvilin
,
P. S.
Carney
, and
R.
Hillenbrand
,
ACS Nano
8
,
6911
(
2014
).
33.
B.
Hauer
,
A. P.
Engelhardt
, and
T.
Taubner
,
Opt. Express
20
,
13173
(
2012
).
34.

Previously used in Ref. 7.

35.
A.
Röseler
,
Infrared Spectroscopic Ellipsometry
(
Akademie Verlag
,
Berlin
,
1990
).
You do not currently have access to this content.