Conventional methods require elevated temperatures in order to dissociate high-energy nitrogen bonds in precursor molecules such as ammonia or hydrazine used for nitride film growth. We report enhanced photodissociation of surface-absorbed hydrazine (N2H4) molecules at low temperature by using ultraviolet surface plasmons to concentrate the exciting radiation. Plasmonic nanostructured aluminum substrates were designed to provide resonant near field concentration at λ = 248 nm (5 eV), corresponding to the maximum optical cross section for hydrogen abstraction from N2H4. We employed nanoimprint lithography to fabricate 1 mm × 1 mm arrays of the resonant plasmonic structures, and ultraviolet reflectance spectroscopy confirmed resonant extinction at 248 nm. Hydrazine was cryogenically adsorbed to the plasmonic substrate in a low-pressure ambient, and 5 eV surface plasmons were resonantly excited using a pulsed KrF laser. Mass spectrometry was used to characterize the photodissociation products and indicated a 6.2× overall enhancement in photodissociation yield for hydrazine adsorbed on plasmonic substrates compared with control substrates. The ultraviolet surface plasmon enhanced photodissociation demonstrated here may provide a valuable method to generate reactive precursors for deposition of nitride thin film materials at low temperatures.

1.
Y. K.
Kuo
,
T. H.
Wang
,
J. Y.
Chang
, and
M. C.
Tsai
,
Appl. Phys. Lett.
99
,
091107
(
2011
).
2.
O.
Jani
,
I.
Ferguson
,
C.
Honsberg
, and
S.
Kurtz
,
Appl. Phys. Lett.
91
,
132117
(
2007
).
3.
S.
Strite
and
H.
Morkoc
,
J. Vac. Sci. Technol., B
10
,
1237
(
1992
).
4.
T.
Miyazaki
,
T.
Fujimaki
, and
S.
Adachi
,
J. Appl. Phys.
89
,
8316
(
2001
).
5.
F. K.
Yam
and
Z.
Hassan
,
Superlattices Microstruct.
43
,
1
(
2008
).
6.
M. A.
Hoffbauer
,
T. L.
Williamson
,
J. J.
Williams
,
J. L.
Fordham
,
K. M.
Yu
,
W.
Walukiewicz
, and
L. A.
Reichertz
,
J. Vac. Sci. Technol., B
31
,
03C114
(
2013
).
7.
A.
Kinkhabwala
,
Z.
Yu
,
S.
Fan
,
Y.
Avlasevich
,
K.
Mullen
, and
W. E.
Moerner
,
Nat. Photonics
3
,
654
(
2009
).
8.
L.
Brus
,
Acc. Chem. Res.
41
,
1742
(
2008
).
9.
C. J.
Chen
and
R. M.
Osgood
,
Phys. Rev. Lett.
50
,
1705
(
1983
).
10.
R. T.
Kidd
,
D.
Lennon
, and
S. R.
Meech
,
J. Chem. Phys.
113
,
8276
(
2000
).
11.
S.
Linic
,
P.
Christopher
, and
D. B.
Ingram
,
Nat. Mater.
10
,
911
(
2011
).
12.
S. M.
Morton
and
L.
Jensen
,
J. Chem. Phys.
135
,
134103
(
2011
).
13.
H.
Nabika
,
M.
Takase
,
F.
Nagasawa
, and
K.
Murakoshi
,
J. Phys. Chem. Lett.
1
,
2470
(
2010
).
14.
A.
Nitzan
and
L. E.
Brus
,
J. Chem. Phys.
75
,
2205
(
1981
).
15.
R. A.
Pala
,
K. T.
Shimizu
,
N. A.
Melosh
, and
M. L.
Brongersma
,
Nano Lett.
8
,
1506
(
2008
).
16.
M.
Juan
,
M.
Righini
, and
R.
Quidant
,
Nat. Photonics
5
,
349
(
2011
).
17.
R.
Bardhan
,
S.
Lal
,
A.
Joshi
, and
A.
Halas
,
Acc. Chem. Res.
44
,
936
(
2011
).
18.
G. L.
Vaghjiani
,
J. Chem. Phys.
98
,
2123
(
1993
).
19.
E. L.
Woodbridge
,
M. N. R.
Ashfold
, and
S. R.
Leone
,
J. Chem. Phys.
94
,
4195
(
1991
).
20.
W.-G.
Liu
and
W. A.
Goddard
,
J. Am. Chem. Soc.
134
,
12970
(
2012
).
21.
Y.
Watanabe
,
W.
Inami
, and
Y.
Kawata
,
J. Appl. Phys.
109
,
023112
(
2011
).
22.
M. W.
Knight
,
L.
Liu
,
Y.
Wang
,
L.
Brown
,
S.
Mukherjee
,
N. S.
King
,
H. O.
Everitt
,
P.
Nordlander
, and
N. J.
Halas
,
Nano Lett.
12
,
6000
(
2012
).
23.
J.
Hu
,
L.
Chen
,
Z.
Lian
,
M.
Cao
,
H.
Li
,
W.
Sun
,
N.
Tong
, and
H.
Zeng
,
J. Phys. Chem. C
116
,
15584
(
2012
).
24.
M. A.
Verschuuren
, Ph.D. dissertation, Utrecht university,
2010
.
You do not currently have access to this content.