We report on the fabrication and characterization of synthesized multiwall MoS2 nanotube (NT) and nanoribbon (NR) field-effect transistors (FETs). The MoS2 NTs and NRs were grown by chemical transport, using iodine as a transport agent. Raman spectroscopy confirms the material as unambiguously MoS2 in NT, NR, and flake forms. Transmission electron microscopy was used to observe cross sections of the devices after electrical measurements and these were used in the interpretation of the electrical measurements, allowing the estimation of the current density. The NT and NR FETs demonstrate n-type behavior, with ON/OFF current ratios exceeding 103, and with current densities of 1.02 μA/μm and 0.79 μA/μm at VDS = 0.3 V and VBG = 1 V, respectively. Photocurrent measurements conducted on a MoS2 NT FET revealed short-circuit photocurrent of tens of nanoamps under an excitation optical power of 78 μW and 488 nm wavelength, which corresponds to a responsivity of 460 μA/W. A long channel transistor model was used to model the common-source characteristics of MoS2 NT and NR FETs and was shown to be consistent with the measured data.

2.
G.
Fiori
,
F.
Bonaccorso
,
G.
Iannacone
,
T.
Palacios
,
D.
Neumaier
,
A.
Seabaugh
,
S. K.
Banerjee
, and
L.
Colombo
,
Nat. Nanotechnol.
9
,
768
(
2014
).
3.
M. L.
Tsai
,
S. H.
Su
,
J. K.
Chang
,
D. S.
Tsai
,
C. H.
Chen
,
C. I.
Wu
,
L. J.
Li
,
L. J.
Chen
, and
J. H.
He
,
ACS Nano
8
,
8317
(
2014
).
4.
G.
Prasad
and
O. N.
Srivastava
,
J. Phys. D: Appl. Phys.
21
,
1028
(
1988
).
5.
N.
Huo
,
S.
Yang
,
Z.
Wei
,
S. S.
Li
,
J. B.
Xia
, and
J.
Li
,
Sci. Rep.
4
,
5209
(
2014
).
6.
B.
Baugher
,
H.
Churchill
,
Y.
Yang
, and
P.
Herrero
,
Nat. Nanotechnol.
9
,
262
(
2014
).
7.
D. J.
Late
,
Y. K.
Huang
,
B.
Liu
,
J.
Acharya
,
S. N.
Shirodkar
,
J.
Luo
,
A.
Yan
,
D.
Charles
,
U. V.
Waghmare
,
V. P.
Dravid
, and
C. N. R.
Rao
,
ACS Nano
7
,
4879
(
2013
).
8.
F. K.
Perkins
,
A. L.
Friedman
,
E.
Cobas
,
P. M.
Campbell
,
G. G.
Jernigan
, and
B. T.
Jonker
,
Nano Lett.
13
,
668
(
2013
).
9.
B.
Radisavljevic
,
A.
Radenovic
,
J.
Brivio
,
V.
Giacometti
, and
A.
Kis
,
Nat. Nanotechnol.
6
,
147
(
2011
).
10.
S.
Fathipour
,
W. S.
Hwang
,
T. H.
Kosel
,
H.
Xing
,
W.
Haensch
,
D.
Jena
, and
A. C.
Seabaugh
, in
Device Research Conference (DRC)
, pp.
115
116
.
11.
S.
Fathipour
,
N.
Ma
,
W. S.
Hwang
,
V.
Protasenko
,
S.
Vishwanath
,
H. G.
Xing
,
H.
Xu
,
D.
Jena
,
J.
Appenzeller
, and
A.
Seabaugh
,
Appl. Phys. Lett.
105
,
192101
(
2014
).
12.
W. S.
Hwang
,
M.
Remskar
, and
R.
Yan
,
Appl. Phys. Lett.
101
,
013107
(
2012
).
13.
M.
Tosun
,
S.
Chuang
,
H.
Fang
,
A. B.
Sachid
,
M.
Hettick
,
Y.
Lin
,
Y.
Zeng
, and
A.
Javey
,
ACS Nano
8
,
4948
(
2014
).
14.
B.
Radisavljevic
,
M. B.
Whitwick
, and
A.
Kis
,
ACS Nano
7
,
3729
(
2013
).
15.
R.
Levi
,
O.
Bitton
,
G.
Leitus
,
R.
Tenne
, and
E.
Joselevich
,
Nano Lett.
13
,
3736
(
2013
).
16.
H. E.
Unalan
,
Y.
Yang
,
Y.
Zhang
,
P.
Hiralal
,
D.
Kuo
,
S.
Dalal
,
T.
Butler
,
S. N.
Cha
,
J. E.
Jang
,
K.
Chremmou
,
G.
Lentaris
,
D.
Wei
,
R.
Rosentsveig
,
K.
Suzuki
,
H.
Matsumoto
,
M.
Minagawa
,
Y.
Hayashi
,
M.
Chhowalla
,
A.
Tanioka
,
W. I.
Milne
,
R.
Tenne
, and
G. A. J.
Amaratunga
,
IEEE Trans. Electron Devices
55
,
2988
(
2008
).
17.
M.
Remškar
,
A.
Mrzel
,
M.
Virsek
,
M.
Godec
,
M.
Krause
,
A.
Kolitsch
,
A.
Singh
, and
A.
Seabaugh
,
Nanoscale Res. Lett.
6
,
26
(
2011
).
18.
M.
Strojnik
,
A.
Kovic
,
A.
Mrzel
,
J.
Buh
,
J.
Strle
, and
D.
Mihailovic
,
AIP Adv.
4
,
097114
(
2014
).
19.
G.
Seifert
,
H.
Terrones
,
M.
Terrones
,
G.
Jungnickel
, and
T.
Frauenheim
,
Phys. Rev. Lett.
85
,
146
(
2000
).
20.
G.
Seifert
,
H.
Terrones
,
M.
Terrones
,
G.
Jungnickel
, and
T.
Frauenheim
,
Solid State Commun.
114
,
245
(
2000
).
21.
A.
Rothschild
,
J.
Sloan
, and
R.
Tenne
,
J. Am. Chem. Soc.
122
,
5169
(
2000
).
22.
M.
Virsek
,
N.
Novak
,
C.
Filipic
,
P.
Kump
,
M.
Remskar
, and
Z.
Kutnjak
,
J. Appl. Phys.
112
,
103710
(
2012
).
23.
M.
Remskar
,
Z.
Skraba
,
M.
Regula
,
C.
Ballif
,
R.
Sanjines
, and
F.
Levy
,
Adv. Mater.
10
,
246
(
1998
).
24.
M.
Remskar
,
Z.
Skraba
,
F.
Cleton
,
R.
Sanjines
, and
F.
Levy
,
Surf. Rev. Lett.
5
,
423
(
1998
).
25.
X.
Zhang
,
W. P.
Han
,
J. B.
Wu
,
S.
Milana
,
Y.
Lu
,
Q. Q.
Li
,
A. C.
Ferrari
, and
P. H.
Tan
,
Phys. Rev. B
87
,
115413
(
2013
).
26.
Y.
Zhan
,
Z.
Liu
,
S.
Najmaei
,
P. M.
Ajayan
, and
J.
Lou
,
Small
8
,
966
(
2012
).
27.
P. D.
Fleischauer
,
R.
Jeffrey
,
P.
Lince
,
A.
Bertrand
, and
R.
Bauer
,
Langmuir
5
,
1009
(
1989
).
28.
M.
Viršek
,
M.
Krause
,
A.
Kolitsch
, and
M.
Remškar
,
Phys. Status Solidi B
246
,
2782
(
2009
).
29.
S.
Najmaei
,
Z.
Liu
,
P. M.
Ajayan
, and
J.
Lou
,
Appl. Phys. Lett.
100
,
013106
(
2012
).
30.
See supplementary material at http://dx.doi.org/10.1063/1.4906066 for more details on the analytical model and power dependence of Raman peaks.
31.
T. J.
Wieting
and
J. L.
Verble
,
Phys. Rev. B
3
,
4286
(
1971
).
32.
H.
Liu
,
J.
Gu
, and
P.
Ye
,
IEEE Electron Device Lett.
33
,
1273
(
2012
).
33.
S.
Das
and
J.
Appenzeller
,
Nano Lett.
13
,
3396
(
2013
).
34.
O.
Lopez-Sanchez
,
D.
Lembke
,
M.
Kayci
,
A.
Radenovic
, and
A.
Kis
,
Nat. Nanotechnol.
8
,
497
(
2013
).
35.
W.
Choi
,
M. Y.
Cho
,
A.
Konar
,
J. H.
Lee
,
G. B.
Cha
,
S. C.
Hong
,
S.
Kim
,
J.
Kim
,
D.
Jena
,
J.
Joo
, and
S.
Kim
,
Adv. Mater.
24
,
5832
(
2012
).
36.
Z.
Yin
,
H.
Li
,
H.
Li
,
L.
Jiang
,
Y.
Shi
,
Y.
Sun
,
G.
Lu
,
Q.
Zhang
,
X.
Chen
, and
H.
Zhang
,
ACS Nano
6
,
74
(
2012
).
37.
Y.
Li
,
C. Y.
Xu
,
J. Y.
Wang
, and
L.
Zhen
,
Sci. Rep.
4
,
7186
(
2014
).
38.
M. R.
Esmaeili-Rad
and
S.
Salahuddin
,
Sci. Rep.
3
,
2345
(
2013
).
39.
W.
Zhang
,
C. P.
Chuu
,
J. K.
Huang
,
C. H.
Chen
,
M. L.
Tsai
,
Y. H.
Chang
,
C. T.
Liang
,
Y. Z.
Chen
,
Y. L.
Chueh
,
J. H.
He
,
M. Y.
Chou
, and
L. J.
Li
,
Sci. Rep.
4
,
3826
(
2014
).

Supplementary Material

You do not currently have access to this content.