The piezoresistance of silicon has been studied over the past few decades in order to characterize the material's unique electromechanical properties and investigate their wider applicability. While bulk and top-down (etched) micro- and nano-wires have been studied extensively, less work exists regarding bottom-up grown microwires. A facile method is presented for characterizing the piezoresistance of released, phosphorus-doped silicon microwires that have been grown, bottom-up, via a chemical vapour deposition, vapour-liquid-solid process. The method uses conductive tungsten probes to simultaneously make electrical measurements via direct ohmic contact and apply mechanical strain via bend deformation. These microwires display piezoresistive coefficients within an order of magnitude of those expected for bulk n-type silicon; however, they show an anomalous response at degenerate doping concentrations (∼1020 cm−3) when compared to lower doping concentrations (∼1017 cm−3), with a stronger piezoresistive coefficient exhibited for the more highly doped wires. This response is postulated to be due to the different growth mechanism of bottom-up microwires as compared to top-down.

1.
2.
T.
Toriyama
and
S.
Sugiyama
,
J. Microelectromech. Syst.
11
,
598
(
2002
).
3.
T. A.
Langdo
,
M. T.
Currie
,
Z.-Y.
Cheng
,
J. G.
Fiorenza
,
M.
Erdtmann
,
G.
Braithwaite
,
C. W.
Leitz
,
C. J.
Vineis
,
J. A.
Carlin
,
A.
Lochtefeld
,
M. T.
Bulsara
,
I.
Lauer
,
D. A.
Antoniadis
, and
M.
Somerville
,
Solid State Electron.
48
,
1357
(
2004
).
4.
A. A.
Barlian
,
W.-T.
Park
,
J. R.
Mallon
,
A. J.
Rastegar
, and
B. L.
Pruitt
,
Proc. IEEE Inst. Electron Eng.
97
,
513
(
2009
).
5.
M. C.
Putnam
,
S.
Boettcher
,
M. D.
Kelzenberg
,
D. B.
Turner-Evans
,
J. M.
Spurgeon
,
E. L.
Warren
,
R. M.
Briggs
,
N. S.
Lewis
, and
H. A.
Atwater
,
Energy Environ. Sci. Commun.
3
,
1037
(
2010
).
6.
H. B.
Gray
,
Nat. Chem.
1
,
112
(
2009
).
7.
R.
He
and
P.
Yang
,
Nat. Nanotechnol.
1
,
42
(
2006
).
8.
J.
Milne
and
A.
Rowe
,
Phys. Rev. Lett.
105
,
226802
(
2010
).
9.
T. A. U.
Hashim
,
Microelectron. Int.
31
,
78
(
2014
).
10.
K.
Reck
,
J.
Richter
,
O.
Hansen
, and
E. V.
Thomsen
, in
21st IEEE International Conference on Microelectromechanical Systems
(
IEEE
,
2008
), pp.
717
720
.
11.
A. C. H.
Rowe
,
J. Mater. Res.
29
,
731
(
2014
).
12.
S.
Boettcher
,
J. M.
Spurgeon
,
M. C.
Putnam
,
E. L.
Warren
,
D. B.
Turner-Evans
,
M. D.
Kelzenberg
,
J. R.
Maiolo
,
H. A.
Atwater
, and
N. S.
Lewis
,
Science
327
,
185
(
2010
).
13.
B. M.
Kayes
,
M. A.
Filler
,
M. C.
Putnam
,
M. D.
Kelzenberg
,
N. S.
Lewis
, and
H. A.
Atwater
,
Appl. Phys. Lett.
91
,
103110
(
2007
).
14.
F.
Li
,
P. D.
Nellist
, and
D. J. H.
Cockayne
,
Appl. Phys. Lett.
94
,
263111
(
2009
).
15.
Y.
Kanda
,
IEEE Trans. Electron Devices
29
,
64
(
1982
).
16.
F.
Beer
,
E. R.
Johnston
, and
J. T.
DeWolf
,
Mechanics of Materials
, 3rd ed. (
McGraw Hill
,
2002
).
17.
C. P.
Dietrich
,
M.
Lange
,
F. J.
Klupfel
,
H.
Von Wenckstern
,
R.
Schmidt-Grund
, and
M.
Grundmann
,
Appl. Phys. Lett.
98
,
031105
(
2011
).
18.
K.
Matsuda
,
K.
Suzuki
,
K.
Yamamura
, and
Y.
Kanda
,
J. Appl. Phys.
73
,
1838
(
1993
).
19.
A.
Lugstein
,
M.
Steinmair
,
A.
Steiger
,
H.
Kosina
, and
E.
Bertagnolii
,
Nano Lett.
10
,
3204
(
2010
).
20.
W.
Chen
,
L.
Yu
,
S.
Misra
,
Z.
Fan
,
P.
Pareige
,
G.
Patriarche
,
S.
Bouchoule
, and
P.
Roca i Cabarrocas
,
Nat. Commun.
5
,
4134
(
2014
).
21.
O.
Moutanabbir
,
D.
Isheim
,
H.
Blumtritt
,
S.
Senz
,
E.
Pippel
, and
D. N.
Seidman
,
Nat. Lett.
496
,
78
(
2013
).
22.
A. J.
Tavendale
and
S. J.
Pearton
,
J. Phys. C
16
,
1665
(
1983
).
23.
J.
Kinoshita
,
J. Phys. Soc. Jpn.
33
,
743
(
1972
).
24.
E. J.
Nemanick
,
P. T.
Hurley
,
B. S.
Brunschwig
, and
N. S.
Lewis
,
J. Phys. Chem. B
110
,
14800
(
2006
).
25.
K. T.
Wong
and
N. S.
Lewis
,
Acc. Chem. Res.
47
(
10
),
3037
(
2014
).
26.
I.
Yahyaie
,
K.
McEleney
,
M.
Walter
,
D. R.
Oliver
,
D. J.
Thomson
,
M. S.
Freund
, and
N. S.
Lewis
,
J. Phys. Chem. Lett.
2
,
675
(
2011
).
27.
S.
Ruffell
,
J. E.
Bradby
,
N.
Fujisawa
, and
J. S.
Williams
,
J. Appl. Phys.
101
,
083531
(
2007
).
28.
J.
Bradby
and
J.
Williams
,
Phys. Rev. B.
67
,
085205
(
2003
).
29.
J. Z.
Hu
,
L. D.
Merkle
,
C. S.
Menoni
, and
I. L.
Spain
,
Phys. Rev. B.
34
,
4679
(
1986
).
30.
R.
Hull
,
Properties of Crystalline Silicon
, 1st ed. (
IET
,
1999
), p.
1016
.
31.
M.
Takayasu
,
L.
Chiesa
,
D. L.
Harris
,
A.
Allegritti
, and
J. V.
Minervini
,
Supercond. Sci. Technol.
24
,
045012
(
2011
).
32.
L. L.
Bucciarelli
,
Engineering Mechanics for Structures
(
Dover
,
2009
).
33.
K.
Najafi
and
K.
Suzuki
,
Thin Solid Films
181
,
251
(
1989
).
34.
M. J.
Madou
,
Fundamentals of Microfabrication: The Science of Miniaturization
, 2nd ed. (
CRC Press
,
2002
).
35.
M. A.
Hopcroft
,
W. D.
Nix
, and
T. W.
Kenny
,
J. Microelectromech. Syst.
19
,
229
(
2010
).
36.
J. P.
Bruce
,
S.
Asgari
,
S.
Ardo
,
N. S.
Lewis
,
M. S.
Freund
, and
D. R.
Oliver
,
J. Phys. Chem. C
118
(
48
),
27742
27748
(
2014
).
37.
O. N.
Tufte
and
E. L.
Stelzer
,
Phys. Rev.
133
,
A1705
(
1964
).
You do not currently have access to this content.