Fluorescence resonance energy transfer (FRET) from individual, dye-labeled RNA molecules confined in freely-diffusing attoliter-volume aqueous droplets is carefully compared to FRET from unconfined RNA in solution. The use of freely-diffusing droplets is a remarkably simple and high-throughput technique that facilitates a substantial increase in signal-to-noise for single-molecular-pair FRET measurements. We show that there can be dramatic differences between FRET in solution and in droplets, which we attribute primarily to an altered pH in the confining environment. We also demonstrate that a sufficient concentration of a non-ionic surfactant mitigates this effect and restores FRET to its neutral-pH solution value. At low surfactant levels, even accounting for pH, we observe differences between the distribution of FRET values in solution and in droplets which remain unexplained. Our results will facilitate the use of nanoemulsion droplets as attoliter volume reactors for use in biophysical and biochemical assays, and also in applications such as protein crystallization or nanoparticle synthesis, where careful attention to the pH of the confined phase is required.

1.
D.
Nettels
and
B.
Schuler
, “
Single-molecule FRET of protein-folding dynamics
,” in
Single-molecule Biophysics: Experiment and Theory
, Advances in Chemical Physics Vol.
146
, edited by
T.
Komatsuzaki
,
M.
Kawakami
,
S.
Takahashi
,
H.
Yang
, and
R. J.
Silbey
(
Wiley
,
2012
), pp.
23
48
.
2.
P.
Li
and
L.
Goldner
, “
Application of single-molecule fluorescence in RNA biology
,” in
RNA Nanotechnology
, edited by
B.
Wang
(
Pan Stanford
,
2014
), pp.
185
212
.
3.
J. E.
Reiner
,
A. M.
Crawford
,
R. B.
Kishore
,
L. S.
Goldner
,
K.
Helmerson
, and
M. K.
Gilson
, “
Optically trapped aqueous droplets for single molecule studies
,”
Appl. Phys. Lett.
89
,
013904
(
2006
).
4.
E.
Boukobza
,
A.
Sonnenfeld
, and
G.
Haran
, “
Immobilization in surface-tethered lipid vesicles as a new tool for single biomolecule spectroscopy
,”
J. Phys. Chem. B
105
,
12165
12170
(
2001
).
5.
J.
Tang
,
A. M.
Jofre
,
R.
Kishore
,
J. E.
Reiner
,
M. E.
Greene
,
G. M.
Lowman
,
J. S.
Denker
,
C.
Willis
,
K.
Helmerson
, and
L. S.
Goldner
, “
Generation and mixing of subfemtoliter volume aqueous droplets on demand
,”
Anal. Chem.
81
,
8041
8047
(
2009
).
6.
J.
Tang
,
A. M.
Jofre
,
G. M.
Lowman
,
R. B.
Kishore
,
J. E.
Reiner
,
K.
Helmerson
,
L. S.
Goldner
, and
M. E.
Greene
, “
Green fluorescent protein in inertially injected aqueous nanodroplets
,”
Langmuir
24
,
4975
4978
(
2008
).
7.
A.
Jofre
,
J. Y.
Tang
,
M. E.
Greene
,
G. M.
Lowman
,
N.
Hodas
,
R. B.
Kishore
,
K.
Helmerson
, and
L. S.
Goldner
, “
Hydrosomes: Femtoliter containers for fluorescence spectroscopy studies
,”
Proc. SPIE
6644
,
66440E
(
2007
).
8.
See supplementary material at http://dx.doi.org/10.1063/1.4921202 for details of the methodology and additional figures and tables.
9.
P.
Milas
,
B. D.
Gamari
,
L.
Parrot
,
B. P.
Krueger
,
S.
Rahmanseresht
,
J.
Moore
, and
L. S.
Goldner
, “
Indocyanine dyes approach free rotation at the 3′ terminus of A-RNA: A comparison with the 5′ terminus and consequences for fluorescence resonance energy transfer
,”
J. Phys. Chem. B
117
,
8649
8658
(
2013
).
10.
C. E.
Aitken
,
R. A.
Marshall
, and
J. D.
Puglisi
, “
An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments
,”
Biophys. J.
94
,
1826
1835
(
2008
).
11.
C.
Holtze
,
A. C.
Rowat
,
J. J.
Agresti
,
J. B.
Hutchison
,
F. E.
Angilè
,
C. H. J.
Schmitz
,
S.
Köster
,
H.
Duan
,
K. J.
Humphry
,
R. A.
Scanga
,
J. S.
Johnson
,
D.
Pisignano
, and
D. A.
Weitz
, “
Biocompatible surfactants for water-in-fluorocarbon emulsions
,”
Lab Chip
8
,
1632
1639
(
2008
).
12.
B. D.
Gamari
,
D.
Zhang
,
R. E.
Buckman
,
P.
Milas
,
J. S.
Denker
,
H.
Chen
,
L.
Hongmin
, and
L. S.
Goldner
, “
Inexpensive electronics and software for photon statistics and correlation spectroscopy
,”
Am. J. Phys.
82
,
712
722
(
2014
).
13.
I. V.
Gopich
and
A.
Szabo
, “
Theory of single-molecule fret efficiency histograms
,” in
Single-molecule Biophysics: Experiment and Theory
, Advances in Chemical Physics Vol.
146
, edited by
T.
Komatsuzaki
,
M.
Kawakami
,
S.
Takahashi
,
H.
Yang
, and
R.
Silbey
(
John Wiley & Sons, Inc.
,
2012
), pp.
245
297
.
14.
S.
Kalinin
,
E.
Sisamakis
,
S. W.
Magennis
,
S.
Felekyan
, and
C. A. M.
Seidel
, “
On the origin of broadening of single-molecule fret efficiency distributions beyond shot noise limits
,”
J. Phys. Chem. B
114
,
6197
6206
(
2010
).
15.
S.
Hicks
,
J.
Case
, and
A.
Jofre
, “
Conformational diversity of short DNA duplex
,”
J. Phys. Chem. B
114
,
15134
15140
(
2010
).
16.
L. S.
Goldner
,
A. M.
Jofre
, and
J. Y.
Tang
, “
Droplet confinement and fluorescence measurement of single molecules
,”
Methods Enzymol.
472
,
61
88
(
2010
).
17.
R. B.
Mujumdar
,
L. A.
Ernst
,
S. R.
Mujumdar
,
C. J.
Lewis
, and
A. S.
Waggoner
, “
Cyanine dye labeling reagents—sulfoindocyanine succinimidyl esters
,”
Bioconjugate Chem.
4
,
105
111
(
1993
).
18.
V. A.
Bloomfield
,
D. M.
Crothers
, and
J. I.
Tinoco
, “
Bases, nucleosides, and nucleotides
,” in
Nucleic Acids: Structures, Properties, and Functions
(
University Science Books
,
Sausalito, CA
,
2000
), pp.
13
43
.
19.
J. B.
Randolph
and
A. S.
Waggoner
, “
Stability, specificity and fluorescence brightness of multiply-labeled fluorescent DNA probes
,”
Nucleic Acids Res.
25
,
2923
2929
(
1997
).
20.
Y.
Chen
,
J. D.
Muller
,
P. T. C.
So
, and
E.
Gratton
, “
The photon counting histogram in fluorescence fluctuation spectroscopy
,”
Biophys. J.
77
,
553
567
(
1999
).
21.
B.
Huang
,
T.
Perroud
, and
R.
Zare
, “
Photon counting histogram: One-photon excitation
,”
ChemPhysChem
5
,
1523
1531
(
2004
).
22.
J. K.
Beattie
,
A. N.
Djerdjev
, and
G. G.
Warr
, “
The surface of neat water is basic
,”
Faraday Discuss.
141
,
31
39
(
2009
).
23.
J.
Beattie
and
A.
Djerdjev
, “
The pristine oil/water interface: Surfactant-free hydroxide-charged emulsions
,”
Angew. Chem. Int. Ed.
43
,
3568
3571
(
2004
).

Supplementary Material

You do not currently have access to this content.