Multiple “collapsing” field domains are a physical reason for superfast switching and sub-terahertz (sub-THz) emission experimentally observed in powerfully avalanching GaAs structures. This phenomenon, however, has been studied so far without considering carrier energy relaxation and that essentially has restricted the possibility of correct interpretation of experimental results. Here, we apply a hydrodynamic approach accounting for non-local hot-carrier effects. The results confirm the collapsing domain concept, but show that the domains cannot reduce well below 100 nm in width, since a moving collapsing domain leaves behind it a tail of hot carriers, which causes broadening in the rear wall of the domain. This puts principal restrictions on the emission band achievable with our unique avalanche mm-wave source to about 1 THz. Another finding suggested here is a physical mechanism for the single collapsing domain's quasi-steady-state motion determined by powerful impact ionization. The results are of significance for physical interpretation of properties of our pulsed sub-THz source, which has recently demonstrated its application potential in mm-wave imaging in both amplitude and time-domain pulse modes with picosecond time-of-flight precision.

1.
S.
Vainshtein
,
V.
Yuferev
, and
J.
Kostamovaara
, “
Ultra-high field multiple Gunn domains as the physical reason for superfast (picosecond range) switching of a bipolar GaAs transistor
,”
J. Appl. Phys.
97
,
024502
(
2005
).
2.
L.
Hu
,
J.
Su
,
Z.
Ding
,
Q.
Hao
, and
X.
Yuan
, “
Investigation on properties of ultrafast switching in a bulk gallium arsenide avalanche semiconductor switch
,”
J. Appl. Phys.
115
,
094503
(
2014
).
3.
S.
Vainshtein
,
V.
Yuferev
, and
J.
Kostamovaara
, “
Analyses of the picosecond range transient in a high-power switch based on a bipolar GaAs transistor structure
,”
IEEE Trans. Electron Devices
52
,
2760
(
2005
).
4.
S.
Vainshtein
,
V.
Yuferev
,
V.
Palankovski
,
D. S.
Ong
, and
J.
Kostamovaara
, “
Negative differential mobility in GaAs at ultra-high fields: Comparison between an experiment and simulations
,”
Appl. Phys. Lett.
92
,
062114
(
2008
).
5.
S.
Vainshtein
,
J.
Kostamovaara
,
V.
Yuferev
,
W.
Knap
,
A.
Fatimy
, and
N.
Diakonova
, “
Terahertz emission from collapsing field domains during switching of a gallium arsenide bipolar transistor
,”
Phys. Rev. Lett.
99
,
176601
(
2007
).
6.
J. B.
Gunn
, “
Microwave oscillation of current in III-V semiconductors
,”
Solid State Commun.
1
,
88
(
1963
).
7.
B. L.
Gelmont
and
M. S.
Shur
, “
High-field domains in Gunn diodes with two types of carriers
,”
Sov. Phys. JETP
33
,
1234
(
1971
).
8.
H.
Eisele
and
G. I.
Haddad
, “
Two-terminal millimeter-wave sources
,”
IEEE Trans. Microwave Theory Tech.
46
,
739
(
1998
).
9.
L. L.
Bonilla
and
H. T.
Grahn
, “
Non-linear dynamics of semiconductor superlattices
,”
Rep. Prog. Phys.
68
,
577
(
2005
).
10.
M.
Dyakonov
and
M.
Shur
, “
Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current
,”
Phys. Rev. Lett.
71
,
2465
(
1993
).
11.
M.
Seo
,
M.
Urteaga
,
J.
Hacker
,
A.
Young
,
Z.
Griffith
,
V.
Jain
,
R.
Pierson
,
P.
Rowell
,
A.
Skalare
,
A.
Peralta
,
R.
Lin
,
D.
Pukala
, and
M.
Rodwell
, “
InP HBT IC technology for terahertz frequencies: Fundamental oscillators up to 0.57 THz
,”
IEEE J. Solid-State Circuits
46
,
2203
(
2011
).
12.
S.
Vainshtein
and
J.
Kostamovaara
, “
Transmission subterahertz imaging utilizing milliwatt-range nanosecond pulses from miniature, collapsing-domain-based avalanche source
,” in
Terahertz and Mid Infrared Radiation: Detection of Explosives and CBRN (Using Terahertz)
, edited by
M. F.
Pereira
and
O.
Shulika
(
Springer
,
Dordrecht
,
2014
), Chap. 23, p.
175
.
13.
S.
Vainshtein
,
V.
Yuferev
,
J.
Kostamovaara
,
M.
Kulagina
, and
H.
Moilanen
, “
Significant effect of emitter area on the efficiency, stability and reliability of picosecond switching in a GaAs bipolar transistor structure
,”
IEEE Trans. Electron Devices
57
,
733
(
2010
).
14.
T.
Grasser
,
T.-W.
Tang
,
H.
Kosina
, and
S.
Selberherr
, “
A review of hydrodynamic and energy-transport models for semiconductor device simulation
,”
Proc. IEEE
91
,
251
(
2003
).
15.
D.
Vasileska
and
S.
Goodnick
,
Computational Electronics
(
Morgan & Claypool Publishers
,
2006
).
16.
T.
Grasser
,
H.
Kosina
,
C.
Heitzinger
, and
S.
Selberherr
, “
Accurate impact ionization model which accounts for hot and cold carrier populations
,”
Appl. Phys. Lett.
80
,
613
(
2002
).
17.
R.
Stratton
, “
Diffusion of hot and cold electrons in semiconductor barriers
,”
Phys. Rev.
126
,
2002
(
1962
).
18.
K.
Bløtekjaer
, “
Transport equations for electrons in two-valley semiconductors
,”
IEEE Trans. Electron Devices
17
,
38
(
1970
).
19.
S.
Selberherr
,
Analysis and Simulation of Semiconductor Devices
(
Springer
,
Wien - New York
,
1984
).
20.
K.
Hess
,
Advanced Theory of Semiconductor Devices
(
Prentice-Hall
,
Englewood Cliffs
,
1988
).
21.
B.
Meinerzhagen
and
W. L.
Engl
, “
The influence of the thermal equilibrium approximation on the accuracy of classical two-dimensional numerical modeling of silicon submicrometer MOS transistors
,”
IEEE Trans. Electron Devices
35
,
689
(
1988
).
22.
E. M.
Azoff
, “
Energy transport numerical simulation of graded AlGaAs/GaAs heterojunction bipolar transistors
,”
IEEE Trans. Electron Devices
36
,
609
(
1989
).
23.
M.
Lundstrom
,
Fundamentals of Carrier Transport (Modular Series on Solid State Devices)
(
Addison-Wesley
,
Reading
,
1990
), Vol.
10
.
24.
D. K.
Ferry
,
Semiconductors
(
Macmillan
,
New York
,
1991
).
25.
Y.
Apanovich
,
E.
Lyumkis
,
B.
Polsky
,
A.
Shur
, and
P.
Blakey
, “
Steady-state and transient analysis of submicron devices using energy balance and simplified hydrodynamic models
,”
IEEE Trans. Comput. Aided Des.
13
,
702
(
1994
).
26.
W.
Hänsch
,
M.
Orlowski
, and
W.
Weber
, “
The hot-electron problem in submicron MOSFET
,”
J. Phys.
49
,
c4-597
(
1988
).
27.
W.
Hänsch
and
M.
Miura-Mattausch
, “
The hot-electron problem in small semiconductor devices
,”
J. Appl. Phys.
60
,
650
(
1986
).
28.
S.
Vitanov
,
V.
Palankovski
,
S.
Maroldt
, and
R.
Quay
, “
Physics-based modeling of GaN HEMTs
,”
IEEE Trans. Electron Devices
59
,
685
(
2012
).
29.
R.
Redmer
,
J. R.
Madureira
,
N.
Fitzer
,
S. M.
Goodnick
,
W.
Schattke
, and
E.
Schoell
, “
Field effect on the impact ionization rate in semiconductors
,”
J. Appl. Phys.
87
,
781
(
2000
).
30.
S. P.
Platt
,
C. M.
Snowden
, and
R. E.
Miles
, “
Bipolar Monte Carlo - An improved valence band model for GaAs
,” in
Proceedings of the Gallium Arsenide Applications Symposium
(
Rome
,
1990
), pp.
258
265
.
31.
V.
Palankovski
and
R.
Quay
,
Analysis and Simulation of Heterostructure Devices
, edited by
S.
Selberherr
(
Springer
,
Wien–New York
,
2004
).
32.
K.
Tomizawa
,
Numerical Simulation of Submicron Semiconductor Devices
(
Artech House
,
1993
).
You do not currently have access to this content.