A broadband thin-film antireflective coating (ARC)—a regular array of nanopores in a dielectric substrate—is studied theoretically and experimentally. Tuning the geometrical parameters of the array allows for strong suppression of reflection. For a fused silica substrate, reflectivity is lower than 1% over a range with a relative bandwidth, 60%–70%, reaching 0.05% in the minimum. The underlying physics is the spatial dispersion in the porous medium which enables phase compensation for the partially reflected waves in a broad band. This allows for more broadband antireflection than any flat homogeneous single-layer ARC can provide. Importantly, the studied ARC is universal for any transparent dielectric substrate.

1.
H. K.
Raut
,
V. A.
Ganesh
,
A. S.
Nair
, and
S.
Ramakrishna
,
Energy Environ. Sci.
4
,
3779
(
2011
).
2.
S.
Walheim
,
E.
Schäffer
,
J.
Mlynek
, and
U.
Steiner
,
Science
283
,
520
(
1999
).
3.
P.
Lalanne
and
G. M.
Morris
,
Nanotechnology
8
,
53
(
1997
).
4.
M.
Born
and
E.
Wolf
,
Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light
(
CUP Archive
,
1999
).
5.
K. C.
Krogman
,
T.
Druffel
, and
M. K.
Sunkara
,
Nanotechnology
16
,
S338
(
2005
).
6.
J.
Xiong
,
S. N.
Das
,
J. P.
Kar
,
J.-H.
Choi
, and
J.-M.
Myoung
,
J. Mater. Chem.
20
,
10246
(
2010
).
7.
L.
Rayleigh
,
Proc. London Math. Soc.
1
,
51
(
1879
).
8.
W. H.
Southwell
,
Opt. Lett.
8
,
584
(
1983
).
9.
W.
Qiu
,
Y.
Ma
,
J.
Zhao
,
J.-x.
Wang
,
M.
Li
,
S.
Li
, and
J.
Pan
,
Jpn. J. Appl. Phys., Part 1
53
,
021501
(
2014
).
10.
J. W.
Leem
,
Y. P.
Kim
, and
J. S.
Yu
,
J. Opt. Soc. Am. B
29
,
357
(
2012
).
11.
L.
Wang
,
B.-B.
Xu
,
Q.-D.
Chen
,
Z.-C.
Ma
,
R.
Zhang
,
Q.-X.
Liu
, and
H.-B.
Sun
,
Opt. Lett.
36
,
3305
(
2011
).
12.
Y.
Kanamori
,
M.
Sasaki
, and
K.
Hane
,
Opt. Lett.
24
,
1422
(
1999
).
13.
H.-T.
Chen
,
J.
Zhou
,
J. F.
O'Hara
,
F.
Chen
,
A. K.
Azad
, and
A. J.
Taylor
,
Phys. Rev. Lett.
105
,
073901
(
2010
).
14.
B.
Zhang
,
J.
Hendrickson
,
N.
Nader
,
H.-T.
Chen
, and
J.
Guo
,
Appl. Phys. Lett.
105
,
241113
(
2014
).
15.
C. R.
Simovski
,
A. S.
Shalin
,
P. M.
Voroshilov
, and
P. A.
Belov
,
J. Appl. Phys.
114
,
103104
(
2013
).
16.
I.
Staude
,
A. E.
Miroshnichenko
,
M.
Decker
,
N. T.
Fofang
,
S.
Liu
,
E.
Gonzales
,
J.
Dominguez
,
T. S.
Luk
,
D. N.
Neshev
,
I.
Brener
 et al,
ACS Nano
7
,
7824
(
2013
).
17.
B. G.
Prevo
,
E. W.
Hon
, and
O. D.
Velev
,
J. Mater. Chem.
17
,
791
(
2007
).
18.
Y.
Wang
,
L.
Chen
,
H.
Yang
,
Q.
Guo
,
W.
Zhou
, and
M.
Tao
,
Sol. Energy Mater. Sol. Cells
93
,
85
(
2009
).
19.
C.-H.
Chan
,
A.
Fischer
,
A.
Martinez-Gil
,
P.
Taillepierre
,
C.-C.
Lee
,
S.-L.
Yang
,
C.-H.
Hou
,
H.-T.
Chien
,
D.-P.
Cai
,
K.-C.
Hsu
 et al,
Appl. Phys. B
100
,
547
(
2010
).
20.
S.-G.
Lee
,
J.-s.
Choi
,
J.-E.
Kim
,
H.-Y.
Park
, and
C.-S.
Kee
,
Opt. Express
16
,
4270
(
2008
).
21.
J.-M.
Park
,
S.-G.
Lee
,
H.-R.
Park
, and
M.-H.
Lee
,
Opt. Express
18
,
13083
(
2010
).
22.
A. S.
Shalin
,
JETP Lett.
91
,
636
(
2010
).
23.
A. S.
Shalin
,
Quantum Electron.
41
,
163
(
2011
).
24.
M.
Albooyeh
,
D.
Morits
, and
C.
Simovski
,
Metamaterials
5
,
178
(
2011
).
25.
C. L.
Holloway
,
A.
Dienstfrey
,
E. F.
Kuester
,
J. F.
O'Hara
,
A. K.
Azad
, and
A. J.
Taylor
,
Metamaterials
3
,
100
(
2009
).
26.
See http://refractiveindex.info/ for Refractive index database.
27.
P.
Markiewicz
and
M. C.
Goh
,
Langmuir
10
,
5
(
1994
).
28.
M. J.
Booth
,
R.
Juškaitis
, and
T.
Wilson
,
J. Eur. Opt. Soc.
3
,
08026
(
2008
).
29.
See http://www.lumerical.com/tcad-products/fdtd/ for Lumerical Solutions, Inc.
30.
A. S.
Shalin
and
S. A.
Nikitov
,
Prog. Electromagn. Res. B
47
,
127
(
2013
).
You do not currently have access to this content.