Printing electronics has led to application areas which were formerly impossible with conventional electronic processes. Solutions are used as inks on top of large areas at room temperatures, allowing the production of fully flexible circuitry. Commonly, research in these inks have focused on organic and metal-oxide ink materials due to their printability, while these materials lack in the electronic performance when compared to silicon electronics. Silicon electronics, on the other hand, has only recently found their way in solution processes. Printing of cyclopentasilane as the silicon ink has been conducted and devices with far superior electric performance have been made when compared to other ink materials. A thermal annealing step of this material, however, was necessary, which prevented its usage on inexpensive substrates with a limited thermal budget. In this work, we introduce a method that allows polycrystalline silicon (poly-Si) production directly from the same liquid silicon ink using excimer laser irradiation. In this way, poly-Si could be formed directly on top of paper even with a single laser pulse. Using this method, poly-Si transistors were created at a maximum temperature of only 150 °C. This method allows silicon device formation on inexpensive, temperature sensitive substrates such as polyethylene terephthalate, polyethylene naphthalate or paper, which leads to applications that require low-cost but high-speed electronics.

1.
H.
Yan
,
Z.
Chen
,
C.
Newman
,
J. R.
Quinn
,
F.
Dötz
,
M.
Kastler
, and
A.
Facchetti
,
Nature
457
,
679
686
(
2009
).
2.
J.
Li
,
Y.
Zhao
,
H. S.
Tan
,
Y.
Guo
,
C.-A.
Di
,
G.
Yu
,
Y.
Liu
,
M.
Lin
,
S. H.
Lim
,
Y.
Zhou
,
H.
Su
, and
B. S.
Ong
,
Sci. Rep.
2
,
754
(
2012
).
3.
M.
Kaltenbrunner
,
T.
Sekitani
,
J.
Reeder
,
T.
Yokota
,
K.
Kuribara
,
T.
Tokuhara
,
M.
Drack
,
R.
Schwödiauer
,
I.
Graz
,
S.
Bauer-Gogonea
,
S.
Bauer
, and
T.
Someya
,
Nature
499
,
458
463
(
2013
).
4.
S.
Jeong
and
J.
Moon
,
J. Mater. Chem.
22
,
1243
1250
(
2012
).
5.
M.-G.
Kim
,
M. G.
Kanatzidis
,
A.
Facchetti
, and
T. J.
Marks
,
Nat. Mater.
10
,
382
388
(
2011
).
6.
A.
Dindar
,
J. B.
Kim
,
C.
Fuentes-Hernandez
, and
B.
Kippelen
,
Appl. Phys. Lett.
99
,
172104
(
2011
).
7.
U.
Zschieschang
,
T.
Yamamoto
,
K.
Takimiya
,
H.
Kuwabara
,
M.
Ikeda
,
T.
Sekitani
,
T.
Someya
, and
H.
Klauk
,
Adv. Mater.
23
,
654
658
(
2011
).
8.
R.
Martins
,
A.
Nathan
,
R.
Barros
,
L.
Pereira
,
P.
Barquinha
,
N.
Correia
,
R.
Costa
,
A.
Ahnood
,
I.
Ferreira
, and
E.
Fortunato
,
Adv. Mater.
23
,
4491
4496
(
2011
).
9.
R.
Martins
,
A.
Ahnood
,
N.
Correia
,
L.
Pereira
,
R.
Barros
,
P.
Barquinha
,
R.
Costa
,
I.
Ferreira
,
A.
Nathan
, and
E.
Fortunato
,
Adv. Funct. Mater.
23
,
2153
2161
(
2013
).
10.
T.
Shimoda
,
Y.
Matsuki
,
M.
Furusawa
,
T.
Aoki
,
I.
Yudasaka
,
H.
Tanaka
,
H.
Iwasawa
,
D.
Want
,
M.
Miyasaka
, and
Y.
Takeuchi
,
Nature
440
,
783
786
(
2006
).
11.
T.
Masuda
,
N.
Sotani
,
H.
Hamada
,
Y.
Matsuki
, and
T.
Shimoda
,
Appl. Phys. Lett.
100
,
253908
(
2012
).
12.
J.
Zhang
,
R.
Ishihara
,
H.
Takagishi
,
R.
Kawajiri
,
T.
Shimoda
, and
C. I. M.
Beenakker
, in
2011 IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
2011
), p.
14
.5.
13.
J.
Zhang
,
M.
Trifunovic
,
M.
van der Zwan
,
H.
Takagishi
,
R.
Kawajiri
,
T.
Shimoda
,
C. I. M.
Beenakker
, and
R.
Ishihara
,
Appl. Phys. Lett.
102
,
243502
(
2013
).
14.
T.
Masuda
,
Y.
Matsuki
, and
T.
Shimoda
,
Thin Solid Films
520
,
6603
6607
(
2012
).
15.
Arjowiggins Creative Papers, Powercoat HD Technical Data Sheet,
2015
.
You do not currently have access to this content.