The paper presents the experimental and modeling results of a microwave slot antenna in a coplanar configuration based on graphene. The antennas are fabricated on a 4 in. high-resistivity Si wafer, with a ∼300 nm SiO2 layer grown through thermal oxidation. A CVD grown graphene layer is transferred on the SiO2. The paper shows that the reflection parameter of the antenna can be tuned by a DC voltage. 2D radiation patterns at various frequencies in the X band (8–12 GHz) are then presented using as antenna backside a microwave absorbent and a metalized surface. Although the radiation efficiency is lower than a metallic antenna, the graphene antenna is a wideband antenna while the metal antennas with the same geometry and working at the same frequencies are narrowband.

1.
D. L.
Sounas
,
H. S.
Skulason
,
H. V.
Nguyen
,
A.
Guermoune
,
M.
Siaj
,
T.
Szkopek
, and
C.
Caloz
, “
Faraday rotation in magnetically biased graphene at microwave frequencies
,”
Appl. Phys. Lett.
102
,
191901
(
2013
).
2.
A.
Drabińska
,
A.
Wołoś
,
M.
Kamińska
,
W.
Strupinski
, and
J. M.
Baranowski
, “
Microwave studies of weak localization and antilocalization in epitaxial graphene
,”
AIP Conf. Proc.
1566
,
159
(
2013
).
3.
X.
Song
,
M.
Oksanen
,
J.
Li
,
P. J.
Hakonen
, and
M. A.
Sillanpää
, “
Graphene optomechanics realized at microwave frequencies
,”
Phys. Rev. Lett.
113
,
027404
(
2014
).
4.
V.
Singh
,
S. J.
Bosman
,
B. H.
Schneider
,
Y. M.
Blanter
,
A.
Castellanos-Gomez
, and
G. A.
Steele
, “
Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity
,”
Nat. Nanotechnol.
9
,
820
824
(
2014
).
5.
P.
Jiang
,
A. F.
Young
,
W.
Chang
,
P.
Kim
,
L. W.
Engel
, and
D. C.
Tsui
, “
Quantum oscillations observed in graphene at microwave frequencies
,”
Appl. Phys. Lett.
97
,
062113
(
2010
).
6.
D.
Dragoman
and
M.
Dragoman
, “
Time flow in graphene and its implications on the cutoff frequency of ballistic graphene devices
,”
J. Appl. Phys.
110
,
014302
(
2011
).
7.
Z.
Guo
,
R.
Dong
,
P.
Sarathi Chakraborty
,
N.
Lourenco
,
J.
Palmer
,
Y.
Hu
,
M.
Ruan
,
J.
Hankinson
,
J.
Kunc
,
J. D.
Cressler
,
C.
Berger
, and
Walt A.
de Heer
, “
Record maximum oscillation frequency in c-face epitaxial graphene transistors
,”
Nano Lett.
13
,
942
947
(
2013
).
8.
L.
Liao
,
J.
Bai
,
R.
Cheng
,
Y.-C.
Lin
,
S.
Jiang
,
Y.
Qu
,
Y.
Huang
, and
X.
Duan
, “
Sub-100 nm channel length graphene transistors
,”
Nano Lett.
10
,
3952
3956
(
2010
).
9.
M.
Dragoman
,
A.
Dinescu
, and
D.
Dragoman
, “
Negative differential resistance in graphene based ballistic field-effect transistor with oblique top gate
,”
Nanotechnology
25
,
415201
(
2014
).
10.
M.
Dragoman
,
D.
Neculoiu
,
G.
Deligeorgis
,
G.
Konstantinidis
,
D.
Dragoman
,
A.
Cismaru
,
A. A.
Muller
, and
R.
Plana
, “
Millimeter-wave generation via frequency multiplication in graphene
,”
Appl. Phys. Lett.
97
,
093101
(
2010
).
11.
S.-J.
Han
,
A.
Valdes Garcia
,
S.
Oida1
,
K. A.
Jenkins
, and
W.
Haensch
, “
Graphene radio frequency receiver integrated circuits
,”
Nat. Commun.
5
,
3086
(
2014
).
12.
M.
Dragoman
,
D.
Neculoiu
,
A.
Cismaru
,
G.
Deligeorgis
,
G.
Konstantinidis
, and
D.
Dragoman
, “
Graphene radio: Detecting radiowaves with a single atom sheet
,”
Appl. Phys. Lett.
101
,
033109
(
2012
).
13.
L.
Vicarelli1
,
M. S.
Vitiello
,
D.
Coquillat
,
A.
Lombardo
,
A. C.
Ferrari
,
W.
Knap
,
M.
Polini
,
V.
Pellegrini
, and
A.
Tredicucci
, “
Graphene field-effect transistors as room-temperature terahertz detectors
,”
Nat. Mater.
11
,
865
871
(
2012
).
14.
A.
Zak
,
M. A.
Andersson
,
M.
Bauer
,
J.
Matukas
,
A.
Lisauskas
,
H. G.
Roskos
, and
J.
Stake
, “
Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene
,”
Nano Lett.
14
,
5834
5838
(
2014
).
15.
A.
Zurutuza
and
C.
Marinelli
, “
Challenges and opportunities in graphene commercialization
,”
Nat. Nanotehnol.
9
,
730
734
(
2014
).
16.
M.
Dragoman
,
D.
Neculoiu
,
A.
Cismaru
,
A. A.
Muller
,
G.
Deligeorgis
,
G.
Konstantinidis
,
D.
Dragoman
, and
R.
Plana
, “
Coplanar waveguide on graphene in the range 40 MHz–110 GHz
,”
Appl. Phys. Lett.
99
,
033112
(
2011
).
17.
A.
Ahemed
,
I. A.
Godthorpe
, and
A. K.
Khandani
, “
Electrically tunable materials for microwave applications
,”
Appl. Phys. Rev.
2
,
011302
(
2015
).
18.
H.
Yoon
,
C.
Forsythe
,
L.
Wang
,
N.
Tombros
,
K.
Watanabe
,
T.
Taniguchi
,
J.
Hone
,
P.
Kim
, and
D.
Ham
, “
Measurement of collective dynamical mass of Dirac fermions in graphene
,”
Nat. Nanotechnol. Lett.
9
,
594
599
(
2014
).
19.
J.
Perruisseau-Carrier
, “
Graphene for antenna applications: Opportunities and challenges from microwaves to THz
,” in
Loughborough Antennas and Propagation Conference (LAPC)
(
IEEE
,
2012
), pp.
1
4
.
20.
J.
Perruisseau-Carrier
,
M.
Tamagnone
,
J. S.
Gomez-Diaz
, and
E.
Carrasco
, “
Graphene antennas: Can integration and reconfigurability compensate for the loss?
,” in
European Microwave Conference (EuMC)
(
IEEE
,
2013
), pp.
369
372
.
21.
M.
Burla
,
D. A. I.
Marpaung
,
Z.
Leimeng
,
M. R.
Khan
,
A.
Leinse
,
W.
Beeker
,
M.
Hoekmanm
,
R. G.
Heideman
, and
C. G. H.
Roeloffzen
, “
Multiwavelength-integrated optical beamformer based on wavelength division multiplexing for 2-D phased array antennas
,”
J. Lightwave Technol.
32
(
20
),
3509
3520
(
2014
).
22.
X.
Zhang
,
A.
Hosseini
,
H.
Subbaraman
,
W.
Shiyi
,
Z.
Qiwen
,
L.
Jingdong
,
A. K.-Y.
Jen
, and
R. T.
Chen
, “
Integrated photonic electromagnetic field sensor based on broadband bowtie antenna coupled silicon organic hybrid modulator
,”
J. Lightwave Technol.
32
(
20
),
3774
3784
(
2014
).
You do not currently have access to this content.