We demonstrate that the addition of a tungsten oxide (WO3) layer beneath a bismuth vanadate (BiVO4) photocatalyst layer with a nanotextured pillar morphology significantly increases the photocurrent density in photoelectrochemical water splitting. The WO3-BiVO4 bilayer films produced a photocurrent of up to 3.3 mA/cm2 under illumination at 100 mW/cm2 (AM1.5 spectrum). The bilayer film was characterized by scanning electron microscopy, X-ray diffraction, and photoelectrochemical methods, which confirmed the superiority of the bilayer film in terms of its morphology and charge separation and transport ability. Both WO3 and BiVO4 were deposited by electrostatic spraying under open-air conditions, which resulted in nanotextured pillars of BiVO4 atop a smooth WO3 film. The optimal coating conditions are also reported.

You do not currently have access to this content.