We describe thermal radiation from nonlinear (χ(3)) photonic cavities coupled to external channels and subject to incident monochromatic light. Our work extends related work on nonlinear mechanical oscillators to the problem of thermal radiation, demonstrating that bistability can enhance thermal radiation by orders of magnitude and result in strong lineshape alternations, including “super-narrow spectral peaks” occurring at the onset of kinetic phase transitions. We show that when the cavities are designed to exhibit perfect linear emissivity (rate matching), such thermally activated transitions can be exploited to dramatically tune the output power and radiative properties of the cavity, leading to a kind of Kerr-mediated thermo-optic effect. Finally, we demonstrate that in certain parameter regimes, the output radiation exhibits Stokes and anti-Stokes side peaks whose relative magnitudes can be altered by tuning the internal temperature of the cavity relative to its surroundings, a consequence of strong correlations and interference between the emitted and reflected radiation.

1.
K. J.
Vahala
, “
Optical microcavities
,”
Nature
424
,
839
846
(
2003
).
2.
T. J.
Kippenberg
and
K. J.
Vahala
, “
Cavity opto-mechanics
,”
Opt. Express
15
(
25
),
17172
17205
(
2007
).
3.
R.
Lifshitz
and
M. C.
Cross
, “
Nonlinear dynamics of nanomechanical and micromechanical resonators
,”
Rev. Nonlinear Dyn. Complexity
1
,
1
50
(
2008
).
4.
R.
Quidant
,
J.
Gieseler
, and
L.
Novotny
, “
Thermal nonlinearities in a nanomechanical oscillator
,”
Nat. Phys.
9
,
806
810
(
2013
).
5.
J.
Chaste
,
A.
Eichler
,
J.
Moser
,
G.
Cellabos
,
R.
Rurali
, and
A.
Bachtold
, “
A nanomechanical mass sensor with yoctogram resolution
,”
Nat. Nanotechnol.
7
,
301
304
(
2012
).
6.
A. N.
Clelan
and
M. L.
Roukes
, “
Noise processes in nanomechanical resonators
,”
J. Appl. Phys.
92
(
5
),
2758
2769
(
2002
).
7.
R.
Almog
,
S.
Zaitsev
,
O.
Shtempluck
, and
E.
Buks
, “
High intermodulation gain in a micromechanical duffing resonator
,”
Appl. Phys. Lett.
88
,
213509
(
2006
).
8.
Fluctuating Nonlinear Oscillators: From Nanomechanics to Quantum Superconducting Circuits
, edited by
M.
Dykman
(
Oxford University Press
,
2012
), Chap. 13.
9.
L.-A.
Wu
,
M.
Xiao
, and
H. J.
Kimble
, “
Squeezed states of light from an optical parametric oscillator
,”
JOSA-B
4
,
1465
1476
(
1987
).
10.
L.
Gammaltoni
,
P.
Hangi
,
P.
Jung
, and
F.
Marchesonl
, “
Stochastic resonance
,”
Rev. Mod. Phys.
70
,
223
(
1998
).
11.
M. I.
Dykman
, “
Theory of nonlinear nonequilibrium oscillators interacting with a medium
,”
Zh. Eksp. Theor. Fiz.
68
,
2082
2094
(
1975
).
12.
M. I.
Dykman
and
P. V. E.
McClintok
, “
Power spectra of noise-driven nonlinear systems and stochastic resonance
,”
Physica D
58
,
10
30
(
1992
).
13.
M. I.
Dykman
,
D. G.
Luchinsky
, and
R.
Manella
, “
Supernarrow spectral peaks and high-frequency stochastic resonance in systems with coexisting periodic attractors
,”
Phys. Rev. E
49
(
2
),
1198
1215
(
1994
).
14.
C.
Stambaugh
and
H. B.
Chan
, “
Supernarrow spectral peaks near a kinetic phase transition in a driven nonlinear micromechanical oscillator
,”
Phys. Rev. Lett.
97
,
110602
(
2006
).
15.
C.
Stambaugh
and
H. B.
Chan
, “
Noise-activated switching in a driven nonlinear micromechanical oscillator
,”
Phys. Rev. B
73
,
172302
(
2006
).
16.
S.
Andre
,
L.
Guo
,
V.
Peano
,
M.
Mathaler
, and
G.
Schon
, “
Emission spectrum of the driven nonlinear oscillator
,”
Phys. Rev. A
85
,
053825
(
2012
).
17.
M.
Notomi
,
A.
Shinya
,
S.
Mitsugi
,
G.
Kira
,
E.
Kuramochi
, and
T.
Tanabe
, “
Optical bistable switching action of Si high-q photonic-crystal nanocavities
,”
Opt. Express
13
(
7
),
2678
2687
(
2005
).
18.
A. R.
Cowan
and
J. F.
Young
, “
Optical bistability involving photonic crystal microcavities and fano line shapes
,”
Phys. Rev. E
68
,
046606
(
2003
).
19.
J. D.
Joannopoulos
,
S. G.
Johnson
,
J. N.
Winn
, and
R. D.
Meade
,
Photonic Crystals: Molding the Flow of Light
, 2nd ed. (
Princeton University Press
,
2008
).
20.
P. D.
Drummond
and
D. F.
Walls
, “
Quantum theory of optical bistability. I. Nonlinear polarisability model
,”
J. Phys. A
13
,
725
(
1980
).
21.
L.
Wang
and
B.
Li
, “
Thermal memory: A storage of phononic information
,”
Phys. Rev. Lett.
101
,
267203
(
2008
).
22.
K.
Nozaki
,
S.
Matsuo
,
K.
Takeda
,
T.
Sato
,
E.
Kuramochi
, and
M.
Notomi
, “
Ingaas nano-photodetectors based on photonic crystal waveguide including ultracompact buried heterostructure
,”
Opt. Express
21
,
19022
(
2013
).
23.
C. R.
Otey
,
W. T.
Lau
, and
S.
Fan
, “
Thermal rectification through vacuum
,”
Phys. Rev. Lett.
104
(
15
),
154301
(
2010
).
24.
N. A.
Roberts
and
D. G.
Walker
, “
A review of thermal rectification observations and models in solid materials
,”
J. Therm. Sci.
50
,
648
662
(
2011
).
25.
A.
Lenert
,
D. M.
Bierman
,
Y.
Nam
,
W. R.
Chan
,
I.
Celanovic
,
M.
Soljacic
, and
E. N.
Wang
, “
A nanophotonic solar thermophotovoltaic device
,”
Nat. Nanotechnol.
9
,
126
130
(
2014
).
26.
S.
Noda
,
M.
Fujita
, and
T.
Asano
, “
Spontaneous-emission control by photonic crystals and nanocavities
,”
Nat. Photonics
1
,
449
458
(
2007
).
27.
H. A.
Haus
,
Waves and Fields in Optoelectronics
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
1984
), Chap. 7.
28.
C.
Khandekar
,
A.
Pick
,
S. G.
Johnson
, and
A. W.
Rodriguez
, “
Radiative heat transfer in nonlinear Kerr media
,”
Phys. Rev. B
91
,
115406
(
2015
).
29.
A.
Rodriguez
,
M.
Soljačić
,
J. D.
Joannopoulos
, and
S. G.
Johnson
, “
χ(2) and χ(3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities
,”
Opt. Express
15
(
12
),
7303
7318
(
2007
).
30.
M.
Soljacic
,
M.
Ibanescu
,
S. J.
Johnson
,
Y.
Fink
, and
J. D.
Joannopoulos
, “
Optimal bistable switching in nonlinear photonic crystals
,”
Phys. Rev. E
66
,
055601
(
2002
).
31.
S. G.
Johnson
,
A.
Mekis
,
S.
Fan
, and
J. D.
Joannopoulos
, “
Molding the flow of light
,”
Comput. Sci. Eng.
3
(
6
),
38
47
(
2001
).
32.
S. H.
Strogatz
,
Nonlinear Dynamics and Chaos
(
Westview Press
,
Boulder, CO
,
1994
).
33.
See supplementary material at http://dx.doi.org/10.1063/1.4918599 for the derivation of potential energy function and the perturbative expressions for the thermal energy and radiation spectra.
34.
M. I.
Dykman
and
M. A.
Krivoglaz
, “
Theory of nonlinear oscillators interacting with a medium
,”
Sov. Phys. Rev.
5
,
265
441
(
1984
).
35.
J.
Komma
,
C.
Schwarz
,
G.
Hoffman
,
D.
Heinert
, and
R.
Nawrodt
, “
Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures
,”
Appl. Phys. Lett.
101
,
041905
(
2012
).
36.
P. B.
Deotare
,
M. W.
McCutcheon
,
I. W.
Frank
,
M.
Khan
, and
M.
Loncar
, “
High quality factor photonic crystal nanobeam cavities
,”
Appl. Phys. Lett.
94
,
121106
(
2009
).

Supplementary Material

You do not currently have access to this content.