In this work, we present experimental data demonstrating the possibility of using magnonic holographic devices for pattern recognition. The prototype eight-terminal device consists of a magnetic matrix with micro-antennas placed on the periphery of the matrix to excite and detect spin waves. The principle of operation is based on the effect of spin wave interference, which is similar to the operation of optical holographic devices. Input information is encoded in the phases of the spin waves generated on the edges of the magnonic matrix, while the output corresponds to the amplitude of the inductive voltage produced by the interfering spin waves on the other side of the matrix. The level of the output voltage depends on the combination of the input phases as well as on the internal structure of the magnonic matrix. Experimental data collected for several magnonic matrixes show the unique output signatures in which maxima and minima correspond to specific input phase patterns. Potentially, magnonic holographic devices may provide a higher storage density compare to optical counterparts due to a shorter wavelength and compatibility with conventional electronic devices. The challenges and shortcoming of the magnonic holographic devices are also discussed.

1.
S.
Tong
and
D.
Koller
,
J. Mach. Learn. Res.
2
(
1
),
45
(
2002
);
A. K.
Jain
,
R. P. W.
Duin
, and
J. C.
Mao
,
IEEE Trans. Pattern Anal. Mach. Intell.
22
(
1
),
4
(
2000
);
W.
Al-Nuaimy
,
Y.
Huang
,
M.
Nakhkash
,
M. T. C.
Fang
,
V. T.
Nguyen
, and
A.
Eriksen
,
J. Appl. Geophys.
43
(
2–4),
157
(
2000
).
2.
M.
Benzeghiba
,
R.
De Mori
,
O.
Deroo
,
S.
Dupont
,
T.
Erbes
,
D.
Jouvet
,
L.
Fissore
,
P.
Laface
,
A.
Mertins
,
C.
Ris
,
R.
Rose
,
V.
Tyagi
, and
C.
Wellekens
,
Speech Commun.
49
(
10–11
),
763
(
2007
).
3.
S. G.
Djorgovski
,
C.
Donalek
,
A.
Mahabal
,
R.
Williams
,
A. J.
Drake
,
M. J.
Graham
, and
E.
Glikman
, in
Proceedings of the 18th International Conference on Pattern Recognition
, edited by
Y. Y.
Tang
,
S. P.
Wang
,
G.
Lorette
, et al.
(
2006
), Vol. 1, p.
856
.
4.
B. M.
Watrasiewicz
,
Nature
216
(
5112
),
302
(
1967
).
5.
D. A. B.
Miller
,
Nat. Photonics
4
(
1
),
3
(
2010
).
6.
A.
Khitun
,
J. Appl. Phys.
113
(
16
),
164503
(
2013
).
7.
G.
Csaba
,
A.
Papp
, and
W.
Porod
,
J. Appl. Phys.
115
(
17
),
17C741
(
2014
).
8.
F.
Gertz
,
A.
Kozhevnikov
,
Y.
Filimonov
, and
A.
Khitun
,
IEEE Trans. Magn.
PP
(
99
),
1
(
2014
).
9.
M.
Covington
,
T. M.
Crawford
, and
G. J.
Parker
,
Phys. Rev. Lett.
89
(
23
),
237202
(
2002
).
10.
See supplementary material at http://dx.doi.org/10.1063/1.4917507 for the set of equations connecting the spin wave amplitudes/phases and the output inductive voltage; and the results of numerical simulations illustrating spin wave propagation through a single magnetic junction for two configurations of the top magnet.
11.
Y.-C.
Chen
,
D.-S.
Hung
,
Y.-D.
Yao
,
S.-F.
Lee
,
H.-P.
Ji
, and
C.
Yu
,
J. Appl. Phys.
101
,
09C104
(
2007
);
G.
Counil
,
J. V.
Kim
,
T.
Devolder
,
P.
Crozat
,
C.
Chappert
, and
A.
Cebollada
,
J. Appl. Phys.
98
(
2
),
023901
(
2005
);
M.
Covington
,
T. M.
Crawford
, and
G. J.
Parker
,
Phys. Rev. Lett.
92
(
8
),
083901
(
2004
).
[PubMed]
12.
O.
Golani
,
L.
Mauri
,
F.
Pasinato
,
C.
Cattaneo
,
G.
Consonnni
,
S.
Balsamo
, and
D. M.
Marom
,
Opt. Express
22
(
10
),
12273
(
2014
).
13.
M.
Hosomi
,
H.
Yamagishi
,
T.
Yamamoto
,
K.
Bessho
,
Y.
Higo
,
K.
Yamane
,
H.
Yamada
,
M.
Shoji
,
H.
Hachino
,
C.
Fukumoto
,
H.
Nagao
, and
H.
Kano
, “
A novel nonvolatile memory with spin torque transfer magnetization switching: spin-RAM
,”
IEEE Int. Electron Devices Meet.
2005
,
459
.
14.
E.
Rubiola
,
Y.
Gruson
, and
V.
Giordano
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
51
(
8
),
957
(
2004
).
15.
S.
Kaka
,
M. R.
Pufall
,
W. H.
Rippard
,
T. J.
Silva
,
S. E.
Russek
, and
J. A.
Katine
,
Nature
437
,
389
(
2005
).
16.
S.
Cherepov
,
P.
Khalili
,
J. G.
Alzate
,
K.
Wong
,
M.
Lewis
,
P.
Upadhyaya
,
J.
Nath
,
M.
Bao
,
A.
Bur
,
T.
Wu
,
G. P.
Carman
,
A.
Khitun
, and
K. L.
Wang
, in
Proceedings of the 56th Conference on Magnetism and Magnetic Materials (MMM 2011)
, DB-03, Scottsdale, Arizona (
2011
).
17.
M.
Madami
,
S.
Bonetti
,
G.
Consolo
,
S.
Tacchi
,
G.
Carlotti
,
G.
Gubbiotti
,
F. B.
Mancoff
,
M. A.
Yar
, and
J.
Akerman
,
Nat. Nanotechnol.
6
(
10
),
635
(
2011
).
18.
K.
Roy
,
S.
Bandyopadhyay
, and
J.
Atulasimha
,
J. Appl. Phys.
112
(
2
),
023914
(
2012
).
19.
T.
Wu
,
A.
Bur
,
P.
Zhao
,
K. P.
Mohanchandra
,
K.
Wong
,
K. L.
Wang
,
C. S.
Lynch
, and
G. P.
Carman
,
Appl. Phys. Lett.
98
(
1
),
012504
(
2011
).
20.
S. V.
Vasiliev
,
V. V.
Kruglyak
,
M. L.
Sokolovskii
, and
A. N.
Kuchko
,
J. Appl. Phys.
101
(
11
),
113919
(
2007
).
21.
Y.
Au
,
M.
Dvornik
,
O.
Dmytriiev
, and
V. V.
Kruglyak
,
Appl. Phys. Lett.
100
(
17
),
172408
(
2012
).

Supplementary Material

You do not currently have access to this content.