We show in this article that phase change materials (PCM) exhibiting a phase transition between a dielectric state and a metallic state are good candidates to perform modulation as well as amplification of radiative thermal flux. We propose a simple situation in plane parallel geometry where a so-called radiative thermal transistor could be achieved. In this configuration, we put a PCM between two blackbodies at different temperatures. We show that the transistor effect can be achieved easily when this material has its critical temperature between the two blackbody temperatures. We also see that the more the material is reflective in the metallic state, the more switching effect is realized, whereas the more PCM transition is stiff in temperature, the more thermal amplification is high. We finally take the example of VO2 that exhibits an insulator-metallic transition at 68 °C. We show that a demonstrator of a radiative transistor could easily be achieved in view of the heat flux levels predicted. Far-field thermal radiation experiments are proposed to back the results presented.

1.
M.
Terraneo
,
M.
Peyrard
, and
G.
Casati
, “
Controlling the energy flow in nonlinear lattices: A model for a thermal rectifier
,”
Phys. Rev. Lett.
88
,
094302
(
2002
).
2.
B.
Li
,
L.
Wang
, and
G.
Casati
, “
Thermal diode: Rectification of heat flux
,”
Phys. Rev. Lett.
93
,
184301
(
2004
).
3.
B.
Li
,
J.
Lan
, and
L.
Wang
, “
Interface thermal resistance between dissimilar anharmonic lattices
,”
Phys. Rev. Lett.
95
,
104302
(
2005
).
4.
C. W.
Chang
,
D.
Okawa
,
A.
Majumdar
, and
A.
Zettl
, “
Solid-state thermal rectifier
,”
Science
314
,
1121
(
2006
).
5.
B.
Hu
,
L.
Yang
, and
Y.
Zhang
, “
Asymmetric heat conduction in nonlinear lattices
,”
Phys. Rev. Lett.
97
,
124302
(
2006
).
6.
J.
Hu
,
X.
Ruan
, and
Y. P.
Chen
, “
Thermal conductivity and thermal rectification in graphene nanoribbons: A molecular dynamics study
,”
Nano Lett.
9
,
2730
(
2009
).
7.
N.
Yang
,
N.
Li
,
L.
Wang
, and
B.
Li
, “
Thermal rectification and negative differential thermal resistance in lattices with mass gradient
,”
Phys. Rev. B
76
,
020301(R)
(
2007
).
8.
D.
Segal
, “
Single mode heat rectifier: Controlling energy flow between electronic conductors
,”
Phys. Rev. Lett.
100
,
105901
(
2008
).
9.
N.
Yang
,
G.
Zhang
, and
B.
Li
, “
Thermal rectification in asymmetric graphene ribbons
,”
Appl. Phys. Lett.
95
,
033107
(
2009
).
10.
L.
Wang
and
B.
Li
, “
Thermal logic gates: Computation with phonons
,”
Phys. Rev. Lett.
99
,
177208
(
2007
).
11.
W. C.
Lo
,
L.
Wang
, and
B.
Li
, “
Thermal transistor: Heat flux switching and modulating
,”
J. Phys. Soc. Jpn.
77
,
054402
(
2008
).
12.
C. R.
Otey
,
W. T.
Lau
, and
S.
Fan
, “
Thermal rectification through vacuum
,”
Phys. Rev. Lett.
104
,
154301
(
2010
).
13.
S.
Basu
and
M.
Francoeur
, “
Near-field radiative transfer based thermal rectification using doped silicon
,”
Appl. Phys. Lett.
98
,
113106
(
2011
).
14.
P.
Ben-Abdallah
and
S.-A.
Biehs
, “
Phase-change radiative thermal diode
,”
Appl. Phys. Lett.
103
,
191907
(
2013
).
15.
E.
Nefzaoui
,
J.
Drevillon
,
Y.
Ezzahri
, and
K.
Joulain
, “
Simple far-field radiative thermal rectifier using Fabry–Perot cavities based infrared selective emitters
,”
Appl. Opt.
53
,
3479
(
2014
).
16.
E.
Nefzaoui
,
K.
Joulain
,
J.
Drevillon
, and
Y.
Ezzahri
, “
Radiative thermal rectification using superconducting materials
,”
Appl. Phys. Lett.
104
,
103905
(
2014
).
17.
K.
Ito
,
K.
Nishikawa
,
H.
Iizuka
, and
H.
Toshiyoshi
, “
Experimental investigation of radiative thermal rectifier using vanadium dioxide
,”
Appl. Phys. Lett.
105
,
253503
(
2014
).
18.
P.
Ben-Abdallah
and
S.-A.
Biehs
, “
Near-field thermal transistor
,”
Phys. Rev. Lett.
112
,
044301
(
2014
).
19.
P.
van Zwol
,
L.
Ranno
, and
J.
Chevrier
, “
Emissivity measurements with an atomic force microscope
,”
J. Appl. Phys.
111
,
063110
(
2012
).
20.
J. P.
Mulet
,
K.
Joulain
,
R.
Carminati
, and
J. J.
Greffet
, “
Enhanced radiative heat transfer at nanometric distances
,”
Microscale Thermophys. Eng.
6
,
209
(
2002
).
21.
K.
Joulain
,
J.-P.
Mulet
,
F.
Marquier
,
R.
Carminati
, and
J.-J.
Greffet
, “
Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field
,”
Surf. Sci. Rep.
57
,
59
(
2005
).
22.
F. J.
Morin
, “
Oxides which show a metal-to-insulator transition at the Neel temperature
,”
Phys. Rev. Lett.
3
,
34
(
1959
).
23.
S.
Biermann
,
A.
Poteryaev
,
A. I.
Lichtenstein
, and
A.
Georges
, “
Dynamical singlets and correlation-assisted Peierls transition in VO2
,”
Phys. Rev. Lett.
94
,
026404
(
2005
).
24.
M. M.
Qazilbash
,
M.
Brehm
,
B. G.
Chae
,
P. C.
Ho
,
G. O.
Andreev
,
B. J.
Kim
,
S. J.
Yun
,
A. V.
Balatsky
,
M. B.
Maple
,
F.
Keilmann
,
H. T.
Kim
, and
D. N.
Basov
, “
Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging
,”
Science
318
,
1750
(
2007
).
25.
M. M.
Qazilbash
,
M.
Brehm
,
G. O.
Andreev
,
A.
Frenzel
,
B. G.
Chae
,
B. J.
Kim
,
S. J.
Yun
,
H. T.
Kim
,
A. V.
Balatsky
,
O. G.
Shpyrko
,
M. B.
Maple
,
F.
Keilmann
, and
D. N.
Basov
, “
Infrared spectroscopy and nano-imaging of the insulator-to-metal transition in vanadium dioxide
,”
Phys. Rev. B
79
,
075107
(
2009
).
26.
M.
Rini
,
A.
Cavalleri
,
R. W.
Schoenlein
,
R.
Lopez
,
L. C.
Feldman
,
R. F.
Haglund
,
L. A.
Boatner
, and
T. E.
Haynes
, “
Photoinduced phase transition in VO2 nanocrystals: ultrafast control of surface-plasmon resonance
,”
Opt. Lett.
30
,
558
(
2005
).
27.
S.
Paradis
,
P.
Laou
, and
D.
Alain
, “
Doped vanadium dioxide with enhanced infrared modulation
,”
Technical Memorandum Report No. DRDC-Valacartier-TM-2007
(
2007
).
You do not currently have access to this content.