The dielectric elastomer minimum energy structure can realize large angular deformations by a small voltage-induced strain of the dielectric elastomer, so it is a suitable candidate to make a rotary joint for a soft robot. Driven with an alternating electric field, the joint deformation vibrational frequency follows the input voltage frequency. However, the authors find that if the rotational inertia increases such that the inertial torque makes the frame deform over a negative angle, then the joint motion will become complicated and the vibrational mode will alter with the change of voltage frequency. The vibration with the largest amplitude does not occur while the voltage frequency is equal to natural response frequency of the joint. Rather, the vibrational amplitude will be quite large over a range of other frequencies at which the vibrational frequency is half of the voltage frequency. This phenomenon was analyzed by a comparison of the timing sequences between voltage and joint vibration. This vibrational mode with the largest amplitude can be applied to the generation lift in a flapping wing actuated by dielectric elastomers.

1.
R.
Pelrine
,
R.
Kornbluh
,
Q.
Pei
, and
J.
Joseph
,
Science
287
,
836
(
2000
).
2.
P.
Brochu
and
Q.
Pei
,
Macromol. Rapid Commun.
31
,
10
(
2010
).
3.
X.
Zhao
and
Z.
Suo
,
Phys. Rev. Lett.
104
,
178302
(
2010
).
4.
A.
Wingert
,
M. D.
Lichter
, and
S.
Dubowsky
,
IEEE/ASME Trans Mechatronics
11
,
448
456
(
2006
).
5.
M.
Karpelson
,
G. Y.
Wei
, and
R. J.
Wood
, in
2014 IEEE International Conference on Robotics and Automation (ICRA)
(
IEEE
,
2008
), pp.
779
786
.
6.
I. A.
Anderson
,
T. C. H.
Tse
,
T.
Inamura
,
B. M.
O'Brien
,
T. G.
McKay
, and
T. A.
Gisby
,
Appl. Phys. Lett.
98
,
123704
(
2011
).
7.
B. M.
O'Brien
,
T. G.
McKay
,
T. A.
Gisby
, and
I. A.
Anderson
,
Appl. Phys. Lett.
100
,
074108
(
2012
).
8.
J.
Zhao
,
J.
Niu
,
L.
Liu
, and
J.
Yu
,
Proc. SPIE
9056
,
905608
(
2014
).
9.
K.
Jung
,
J. C.
Koo
,
J.
Nam
,
Y. K.
Lee
, and
H. R.
Choi
,
Bioinspiration Biomimetics
2
,
S42
(
2007
).
10.
F.
Carpi
,
G.
Frediani
,
S.
Turco
, and
D. D.
Rossi
,
Adv. Funct. Mater.
21
,
4002
(
2011
).
11.
S.
Shian
,
R. M.
Diebold
, and
D. R.
Clarke
,
Opt. Express.
21
,
8669
(
2013
).
12.
R.
Vertechy
,
M.
Bergamasco
,
G.
Berselli
,
V. P.
Castelli
, and
G.
Vassura
,
Fract. Struct. Integr.
23
,
47
56
(
2012
).
13.
M.
Giousouf
and
G.
Kovacs
,
Smart Mater. Struct.
22
,
104010
(
2013
).
14.
G.
Kofod
,
W.
Wirges
,
M.
Paajanen
, and
S.
Bauer
,
Appl. Phys. Lett.
90
,
081916
(
2007
).
15.
G.
Kofod
,
M.
Paajanen
, and
S.
Bauer
,
Appl. Phys. A.
85
,
141
143
(
2006
).
16.
O. A.
Araromi
,
I.
Gavrilovich
,
J.
Shintake
,
S.
Rosset
,
M.
Richard
,
V.
Gass
, and
H. R.
Shea
,
Mechatronics, IEEE/ASME Trans Mechatronics
20
,
438
446
(
2015
).
17.
M. T.
Petralia
and
R. J.
Wood
, in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IEEE
,
2010
), pp.
2357
2363
.
18.
T.
Li
,
S.
Qu
, and
W.
Yang
,
Int. J. Solids Struct.
49
,
3754
3761
(
2012
).
19.
X.
Zhao
and
Z.
Suo
,
Appl. Phys. Lett.
93
,
251902
(
2008
).
You do not currently have access to this content.