We here report an innovative and scalable strategy of transforming a commercial unclad sapphire optical fiber to an all-alumina nanostructured sapphire optical fiber (NSOF). The strategy entails fiber coating with metal aluminum followed by anodization to form alumina cladding of highly organized pore channel structure. Through experiments and numerical simulation, we demonstrate the utility and benefit of NSOF, analogous to all-silica microstructured optical fiber, for evanescent-field surface-enhanced Raman scattering (SERS) measurements. We experimentally reveal the feasibility of Ag nanoparticles (NPs)-enabled NSOF SERS sensing of 10−6 M Rhodamine 6G (R6G) after thermal treatment at 500 °C for 6 h by taking advantage of porous anodic aluminum oxide (AAO) structure to stabilize the Ag NPs. We show, via numerical simulations, that AAO cladding significantly increases the evanescent-field overlap, lower porosity of AAO results in higher evanescent-field overlap, and optimized AAO nanostructure yields greater SERS enhancement.

1.
J. S.
Haggerty
,
W. P.
Menashi
, and
J. F.
Wenckus
, U.S. patent 4,012,213 (15 March
1977
).
2.
H. E.
LaBelle
,
J. Cryst. Growth
50
,
8
(
1980
).
3.
R. K.
Nubling
and
J. A.
Harrington
,
Appl. Opt.
36
,
5934
(
1997
).
4.
G. N.
Merberg
and
J. A.
Harrington
,
Appl. Opt.
32
,
3201
(
1993
).
5.
C.
Raml
,
X.
He
,
M.
Han
,
D. R.
Alexander
, and
Y.
Lu
,
Opt. Lett.
36
,
1287
(
2011
).
6.
H.
Jiang
,
Z.
Cao
,
R.
Yang
,
L.
Yuan
,
H.
Xiao
, and
J.
Dong
,
Thin Solid Films
539
,
81
(
2013
).
7.
S. C.
Bates
,
High Temperature Sapphire Fiber Cladding
, available at: http://www.tvu.com/PSFOCladweb.html.
8.
R. K.
Nubling
,
R. L.
Kozodoy
, and
J. A.
Harrington
,
Proc. SPIE
2131
,
56
61
(
1994
).
9.
W.
Spratt
,
M.
Huang
,
T.
Murray
, and
H.
Xia
,
J. Appl. Phys.
114
,
203501
(
2013
).
10.
H.
Masuda
and
K.
Fukuda
,
Science
268
,
1466
(
1995
).
11.
O.
Jessensky
,
F.
Muller
, and
U.
Gosele
,
Appl. Phys. Lett.
72
,
1173
(
1998
).
12.
J.
Wang
,
C.-W.
Wang
,
Y.
Li
, and
W.-M.
Liu
,
Thin Solid Films
516
,
7689
(
2008
).
13.
S.-H.
Gong
,
A.
Stolz
,
G.-H.
Myeong
,
E.
Dogheche
,
A.
Gokarna
,
S.-W.
Ryu
,
D.
Decoster
, and
Y.-H.
Cho
,
Opt. Lett.
36
,
4272
(
2011
).
14.
R.
Arridge
and
D.
Heywood
,
Br. J. Appl. Phys.
18
,
447
(
1967
).
15.
P.
Shen
and
H.
Fujii
,
J. Am. Ceram. Soc.
87
,
2151
(
2004
).
16.
H.
Masuda
,
H.
Yamada
,
M.
Satoh
, and
H.
Asoh
,
Appl. Phys. Lett.
71
,
2770
(
1997
).
17.
S.
Chang
,
Z. A.
Combs
,
M. K.
Gupta
,
R.
Davis
, and
V. V.
Tsukruk
,
ACS Appl. Mater. Interfaces
2
,
3333
(
2010
).
18.
H.
Chen
,
F.
Tian
,
J.
Chi
,
J.
Kanka
, and
H.
Du
,
Opt. Lett.
39
,
5822
(
2014
).
19.
J.
Sun
,
D.
Ma
,
H.
Zhang
,
X.
Liu
,
X.
Han
,
X.
Bao
,
G.
Weinberg
,
N.
Pfänder
, and
D.
Su
,
J. Am. Chem. Soc.
128
,
15756
(
2006
).
20.
P.
Pinkhasova
,
H.
Chen
,
M. W. G. M.
(Tiny) Verhoeven
,
S.
Sukhishvili
, and
H.
Du
,
RSC Adv.
3
,
17954
(
2013
).
21.
M. M.
Braun
and
L.
Pilon
,
Thin Solid Films
496
,
505
(
2006
).
22.
M. D.
Feit
and
J. A.
Fleck
,
Appl. Opt.
18
,
2843
(
1979
).
23.
Y.
Xu
and
B. Å. S.
Gustafson
,
J. Quant. Spectrosc. Radiat. Transfer
70
,
395
(
2001
).
24.
H.
Chen
,
X.
Kou
,
Z.
Yang
,
W.
Ni
, and
J.
Wang
,
Langmuir
24
,
5233
(
2008
).
You do not currently have access to this content.