We have applied an optical splitting system in order to achieve very high conversion efficiency for a full spectrum multi-junction solar cell. This system consists of multiple solar cells with different band gap optically coupled via an “optical splitter.” An optical splitter is a multi-layered beam splitter with very high reflection in the shorter-wave-length range and very high transmission in the longer-wave-length range. By splitting the incident solar spectrum and distributing it to each solar cell, the solar energy can be managed more efficiently. We have fabricated optical splitters and used them with a wide-gap amorphous silicon (a-Si) solar cell or a CH3NH3PbI3 perovskite solar cell as top cells, combined with mono-crystalline silicon heterojunction (HJ) solar cells as bottom cells. We have achieved with a 550 nm cutoff splitter an active area conversion efficiency of over 25% using a-Si and HJ solar cells and 28% using perovskite and HJ solar cells.

1.
K.
Masuko
,
M.
Shigematsu
,
T.
Hashiguchi
,
D.
Fujishima
,
M.
Kai
,
N.
Yoshimura
,
T.
Yamaguchi
,
Y.
Ichihashi
,
T.
Mishima
,
N.
Matsubara
,
T.
Yamanishi
,
T.
Takahama
,
M.
Taguchi
,
E.
Maruyama
, and
S.
Okamoto
,
IEEE J. Photovoltaics
4
(
6
),
1433
1435
(
2014
).
2.
W.
Shockley
and
H. J.
Queisser
,
J. Appl. Phys.
32
,
510
(
1961
).
3.
K.
Yamamoto
,
A.
Nakajima
,
M.
Yoshimi
,
T.
Sawada
,
S.
Fukuda
,
T.
Suezaki
,
M.
Ichikawa
,
Y.
Koi
,
M.
Goto
,
T.
Meguro
,
T.
Matsuda
,
T.
Sasaki
, and
Y.
Tawada
, in
Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion
(
2006
), p.
1489
.
4.
M.
Yamaguchi
,
Sol. Energy Mater. Sol. Cells
75
,
261
269
(
2003
).
5.
M.
Yamaguchi
,
T.
Takamoto
,
K.
Araki
, and
N.
Ekins.-Daukes
,
Sol. Energy
79
,
78
85
(
2005
).
6.
A. G.
Imenes
and
D. R.
Mills
,
Sol. Energy Mater. Sol. Cells
84
,
19
69
(
2004
).
7.
A.
Barnett
,
D.
Kirkpatrick
,
C.
Honsberg
,
D.
Moore
,
M.
Wanlass
,
K.
Emery
,
R.
Schwartz
,
D.
Carlson
,
S.
Bowden
,
D.
Aiken
,
A.
Gray
,
S.
Kurtz
,
L.
Kazmerski
,
T.
Moriarty
,
M.
Steiner
,
J.
Gray
,
T.
Davenport
,
R.
Buelow
,
L.
Takacs
,
N.
Shatz
,
J.
Bortz
,
O.
Jani
,
K.
Goossen
,
F.
Kiamilev
,
A.
Doolittle
,
I.
Ferguson
,
B.
Unger
,
G.
Schmidt
,
E.
Christensen
, and
D.
Salzman
,
paper presented at the 22nd European Photovoltaic Solar Energy Conference Milan
,
Italy
, 3 September
2007
.
8.
A.
Barnett
,
X.
Wang
,
N.
Waite
,
P.
Murcia
,
C.
Honsberg
,
D.
Kirkpatrick
,
D.
Laubacher
,
F.
Kiamilev
,
K.
Goossen
,
M.
Wanlass
,
M.
Steiner
,
R.
Schwartz
,
J.
Gray
,
A.
Gray
,
P.
Sharps
,
K.
Emery
, and
L.
Kazmerski
,
paper presented at the 33rd IEEE Photovoltaic Specialists Conference (PVSC 33)
,
San Diego
,
CA, USA
, 20 May
2008
.
9.
A.
Barnett
,
D.
Kirkpatrick
,
C.
Honsberg
,
D.
Moore
,
M.
Wanlass
,
K.
Emery
,
R.
Schwartz
,
D.
Carlson
,
S.
Bowden
,
D.
Aiken
,
A.
Gray
,
S.
Kurtz
,
L.
Kazmerski
,
M.
Steiner
,
J.
Gray
,
T.
Davenport
,
R.
Buelow
,
L.
Takacs
,
N.
Shatz
,
J.
Bortz
,
O.
Jani
,
K.
Goossen
,
F.
Kiamilev
,
A.
Doolittle
,
I.
Ferguson
,
B.
Unger
,
G.
Schmidt
,
E.
Christensen
, and
D.
Salzman
,
Prog. Photovoltaics: Res. Appl.
17
,
75
83
(
2009
).
10.
J. D.
McCambridge
,
M. A.
Steiner
,
B. L.
Unger
,
K. A.
Emery
,
E. L.
Christensen
,
M. W.
Wanlass
,
A. L.
Gray
,
L.
Takacs
,
R.
Buelow
,
T. A.
McCollum
,
J. W.
Ashmead
,
G. R.
Schmidt
,
A. W.
Haas
,
J. R.
Wilcox
,
J. V.
Meter
,
J. L.
Gray
,
D. T.
Moore
,
A. M.
Barnett
, and
R. J.
Schwartz
,
Prog. Photovoltaics: Res. Appl.
19
,
352
360
(
2011
).
11.
K.
Yamamoto
,
paper presented at the 9th Workshop on the Future Direction of Photovoltaics
, Tokyo, 7–8 March
2013
.
12.
S.
Kim
,
S.
Kasashima
,
P.
Sichanugrist
,
T.
Kobayashi
,
T.
Nakada
, and
M.
Konagai
,
Sol. Energy Mater. Solar Cells
119
,
214
218
(
2013
).
13.
“The Essential Macleod” (version 9.4,
2012
) developed by Thin Film Center, Inc.
14.
H.-S.
Kim
,
C.-R.
Lee
,
J.-H.
Im
,
K.-B.
Lee
,
T.
Moehl
,
A.
Marchioro
,
S.-J.
Moon
,
R.
Humphry-Baker
,
J.-H.
Yum
,
J. E.
Moser
,
M.
Grätzel
, and
N.-G.
Park
,
Sci. Rep.
2
,
591
(
2012
).
15.
S. A.
Kulkarni
,
T.
Baikie
,
P. P.
Boix
,
N.
Yantara
,
N.
Mathews
, and
S.
Mhaisalkarab
,
J. Mater. Chem. A
2
,
9221
9225
(
2014
).
16.
J. H.
Noh
,
S. H.
Im
,
J. H.
Heo
,
T. N.
Mandal
, and
S. I.
Seok
,
Nano Lett.
13
,
1764
1769
(
2013
).
17.
W.
Edri
,
S.
Kirmayer
,
M.
Kulbak
,
G.
Hodes
, and
D.
Cahen
,
J. Phys. Chem. Lett.
5
,
429
433
(
2014
).
18.
M.
Grätzel
,
Nat. Mater.
13
,
838
842
(
2014
).
19.
J.-H.
Im
,
C.-R.
Lee
,
J.-W.
Lee
,
S.-W.
Park
, and
N.-G.
Park
,
Nanoscale
3
,
4088
4093
(
2011
).
20.
J.-H.
Im
,
H.-S.
Kim
, and
N.-G.
Park
,
APL Mater.
2
,
081510
(
2014
).
21.
N. J.
Jeon
,
J. H.
Noh
,
Y. C.
Kim
,
W. S.
Yang
,
S.
Ryu
, and
S. I.
Seok
,
Nat. Mater.
13
,
897
903
(
2014
).
22.
J. L.
Hernández
,
D.
Adachi
,
K.
Yoshikawa
,
D.
Schroos
,
E. V.
Assche
,
A.
Feltrin
,
N.
Valckx
,
N.
Menou
,
J.
Poortmans
,
M.
Yoshimi
,
T.
Uto
,
H.
Uzu
,
M.
Hino
,
H.
Kawasaki
,
M.
Kanematsu
,
K.
Nakano
,
R.
Mishima
,
T.
Kuchiyama
,
G.
Koizumi
,
C.
Allebé
,
T.
Terashita
,
M.
Hiraishi
,
N.
Nakanishi
, and
K.
Yamamoto
, in
Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition
(
2012
), p.
655
.
23.
J. L.
Hernández
,
D.
Adachi
,
D.
Schroos
,
N.
Valckx
,
N.
Menou
,
T.
Uto
,
M.
Hino
,
M.
Kanematsu
,
H.
Kawasaki
,
R.
Mishima
,
K.
Nakano
,
H.
Uzu
,
T.
Terashita
,
K.
Yoshikawa
,
T.
Kuchiyama
,
M.
Hiraishi
,
N.
Nakanishi
,
M.
Yoshimi
, and
K.
Yamamoto
, in
Proceedings of the 28th European Photovoltaic Solar Energy Conference and Exhibition
(
2013
), p.
741
.
24.
H.-S.
Kim
and
N.-G.
Park
,
J. Phys. Chem. Lett.
5
,
2927
2934
(
2014
).
You do not currently have access to this content.