An athermal multi-wavelength vertical cavity surface emitting laser (VCSEL) array is demonstrated using a thermally actuated cantilever structure with different cantilever lengths. The cavity length of each VCSEL is precisely controlled via the deflection of the cantilever due to difference in the lattice constant of GaAlAs layers. Also, the thermally induced actuation of the cantilever reduces the cavity length as the ambient temperature increases, which compensates the thermal wavelength drift of the VCSEL. The wavelength drift could be reduced within ±0.017 nm/K, which is 4 times smaller than that of conventional VCSELs. The proposed multi-wavelength VCSEL array enables four wavelength channels with 2.5 nm spacing under uncooled operations.

1.
C. F.
Lam
,
L.
Hong
,
B.
Koley
,
Z.
Xiaoxue
,
V.
Kamalov
, and
V.
Gill
,
IEEE Commun. Mag.
48
,
32
(
2010
).
2.
M. A.
Taubenblatt
,
J. Lightwave Technol.
30
,
448
(
2012
).
3.
A.
Mutig
,
S. A.
Blokhin
,
A. M.
Nadtochiy
,
G.
Fiol
,
J. A.
Lott
,
V. A.
Shchukin
,
N. N.
Ledentsov
, and
D.
Bimberg
,
Appl. Phys. Lett.
95
,
131101
(
2009
).
4.
A.
Larsson
,
IEEE J. Sel. Top. Quantum Electron.
17
,
1552
1566
(
2011
).
5.
H.
Dalir
and
F.
Koyama
,
Appl. Phys. Lett.
103
,
091109
(
2013
).
6.
C. J.
Chang-Hasnain
,
M. W.
Maeda
,
J. P.
Harbison
,
L. T.
Florez
, and
C.
Lin
,
J. Lightwave Technol.
9
,
1665
(
1991
).
7.
A.
Fiore
,
Y. A.
Akulova
,
J.
Ko
,
E. R.
Hegblom
, and
L. A.
Coldren
,
Appl. Phys. Lett.
73
,
282
(
1998
).
8.
J. H.
Shin
and
B. S.
Yoo
,
IEEE Photonics Technol. Lett.
11
,
509
(
1999
).
9.
P. B.
Dayal
,
T.
Sakaguchi
,
A.
Matsutani
, and
F.
Koyama
,
Appl. Phys. Express
2
,
092501
(
2009
).
10.
D. L.
Huffaker
and
D. G.
Deppe
,
IEEE Photonics Technol. Lett.
8
,
858
(
1996
).
11.
V.
Karagodsky
,
B.
Pesala
,
C.
Chase
,
W.
Hofmann
,
F.
Koyama
, and
C. J.
Chang-Hasnain
,
Opt. Express.
18
,
694
(
2010
).
12.
M.
Arai
,
T.
Kondo
,
A.
Onomura
,
A.
Matsutani
,
T.
Miyamoto
, and
F.
Koyama
,
IEEE J. Sel. Top. Quantum Electron.
9
,
1367
(
2003
).
13.
M. V. Ramana
Murty
,
X. D.
Huang
,
G. L.
Liu
,
C. C.
Lin
,
D.
Xu
,
C. L.
Shieh
,
H. C.
Lee
, and
J.
Cheng
,
IEEE Photonics Technol. Lett.
17
,
1286
(
2005
).
14.
T.
Amano
,
F.
Koyama
,
T.
Hino
,
A.
Arai
, and
A.
Mastutani
,
J. Lightwave Technol.
21
,
596
(
2003
).
15.
C.
Chang-Hasnain
,
IEEE J. Sel. Top. Quantum Electron.
6
,
978
(
2000
).
16.
M. Y.
Li
,
W.
Yuen
,
G. S.
Li
, and
C. J.
Chang-Hasnain
,
IEEE Photonics Technol. Lett.
10
,
18
(
1998
).
17.
F.
Riemenschneider
,
M.
Maute
,
H.
Halbritter
,
G.
Boehm
,
M.-C.
Amann
, and
P.
Meissner
,
IEEE Photonics Technol. Lett.
16
,
2212
(
2004
).
18.
V.
Jayaraman
,
G. D.
Cole
,
M.
Robertson
,
A.
Uddin
, and
A.
Cable
,
Electron. Lett.
48
,
867
(
2012
).
19.
C.
Gierl
,
T.
Gruendl
,
P.
Debernardi
,
K.
Zogal
,
C.
Grasse
,
H. A.
Davani
,
G.
Böhm
,
S.
Jatta
,
F.
Küppers
,
P.
Meißner
, and
M.-C.
Amann
:
Opt. Express
19
,
17336
(
2011
).
20.
Y.
Zhou
,
M. C. Y.
Huang
, and
C. J.
Chang-Hasnain
,
Opt. Express
16
,
14221
(
2008
).
21.
B.
Kögel
,
P.
Debernardi
,
P.
Westbergh
,
J. S.
Gustavsson
,
Å.
Haglund
,
E.
Haglund
,
J.
Bengtsson
, and
A.
Larsson
,
IEEE J. Quantum Electron.
48
,
144
(
2012
).
22.
H.
Sano
,
A.
Matsutani
, and
F.
Koyama
,
Appl. Phys. Express
2
,
072101
(
2009
).
23.
H.
Sano
,
N.
Nakata
,
M.
Nakahama
,
A.
Matsutani
, and
F.
Koyama
,
Appl. Phys. Lett.
101
,
121115
(
2012
).
24.
M.
Nakahama
,
H.
Sano
,
S.
Inoue
,
T.
Sakaguchi
,
A.
Matsutani
,
M.
Ahmed
,
A.
Bakry
, and
F.
Koyama
,
Jpn. J. Appl. Phys., Part 1
53
,
010303
(
2014
).
25.
M.
Nakahama
,
H.
Sano
,
S.
Inoue
,
T.
Sakaguchi
,
A.
Matsutani
, and
F.
Koyama
,
IEEE Photonics Technol. Lett.
25
,
1747
(
2013
).
You do not currently have access to this content.