A flexure biosensor consists of a suspended beam and a fixed bottom electrode. The adsorption of the target biomolecules on the beam changes its stiffness and results in change of beam's deflection. It is now well established that the sensitivity of sensor is maximized close to the pull-in instability point, where effective stiffness of the beam vanishes. The question: “Do the signal-to-noise ratio (SNR) and the limit-of-detection (LOD) also improve close to the instability point?”, however remains unanswered. In this article, we systematically analyze the noise response to evaluate SNR and establish LOD of critical-point flexure sensors. We find that a flexure sensor acts like an effective low pass filter close to the instability point due to its relatively small resonance frequency, and rejects high frequency noise, leading to improved SNR and LOD. We believe that our conclusions should establish the uniqueness and the technological relevance of critical-point biosensors.

1.
V.
Kumar
,
J. W.
Boley
,
Y.
Yang
,
H.
Ekowaluyo
,
J. K.
Miller
,
G. T. C.
Chiu
, and
J. F.
Rhoads
,
Appl. Phys. Lett.
98
,
153510
(
2011
).
2.
D. R.
Southworth
,
L. M.
Bellan
,
Y.
Linzon
,
H. G.
Craighead
, and
J. M.
Parpia
,
Appl. Phys. Lett.
96
,
163503
(
2010
).
3.
D. J.
Joe
,
Y.
Linzon
,
V. P.
Adiga
,
R. A.
Barton
,
M.
Kim
,
B.
Ilic
,
S.
Krylov
,
J. M.
Parpia
, and
H. G.
Craighead
,
J. Appl. Phys.
111
,
104517
(
2012
).
4.
M. I.
Younis
and
F.
Alsaleem
,
J. Comput. Nonlinear Dyn.
4
,
021010
(
2009
).
5.
W.
Zhang
and
K. L.
Turner
,
Sens. Actuators A
122
,
23
(
2005
).
6.
A.
Jain
,
P. R.
Nair
, and
M. A.
Alam
,
Proc. Natl. Acad. Sci. U.S.A
109
,
9304
(
2012
).
7.
P. R.
Nair
and
M. A.
Alam
,
Nano Lett.
8
,
1281
(
2008
).
8.
N. V.
Lavrik
,
M. J.
Sepaniak
, and
P. G.
Datskos
,
Rev. Sci. Instrum.
75
,
2229
(
2004
).
9.
M.
Zalalutdinov
,
A.
Olkhovets
,
A.
Zehnder
,
B.
Ilic
,
D.
Czaplewski
,
H. G.
Craighead
, and
J. M.
Parpia
,
Appl. Phys. Lett.
78
,
3142
(
2001
).
10.
J.
Go
,
P. R.
Nair
,
B.
Reddy
,
B.
Dorvel
,
R.
Bashir
, and
M. A.
Alam
,
ACS Nano
6
,
5972
(
2012
).
11.
12.
J.
Go
,
P. R.
Nair
, and
M. A.
Alam
,
J. Appl. Phys.
112
,
034516
(
2012
).
13.
A. K.
Gupta
,
P. R.
Nair
,
D.
Akin
,
M. R.
Ladisch
,
S.
Broyles
,
M. A.
Alam
, and
R.
Bashir
,
Proc. Natl. Acad. Sci. U.S.A
103
,
13362
(
2006
).
14.
D.
Ramos
,
J.
Tamayo
,
J.
Mertens
,
M.
Calleja
, and
A.
Zaballos
,
J. Appl. Phys.
100
,
106105
(
2006
).
15.
J.
Tamayo
,
D.
Ramos
,
J.
Mertens
, and
M.
Calleja
,
Appl. Phys. Lett.
89
,
224104
(
2006
).
16.
H.
Craighead
,
Nat. Nanotechnol.
2
,
18
(
2007
).
17.
F.
Sadeghian
,
H.
Goosen
,
A.
Bossche
, and
F.
van Keulen
,
Thin Solid Films
518
,
5018
(
2010
).
18.
H. C.
Nathanson
,
W. E.
Newell
,
R. A.
Wickstrom
, and
J. R.
Davis
,
Trans. Electron Devices
14
,
117
(
1967
).
19.
H.
Torun
,
K. K.
Sarangapani
, and
F. L.
Degertekin
,
Appl. Phys. Lett.
91
,
253113
(
2007
).
20.
A.
Jain
and
M. A.
Alam
,
IEEE Trans. Electron Devices
60
,
4240
(
2013
).
21.
K. L.
Ekinci
,
J. Appl. Phys.
95
,
2682
(
2004
).
22.
Y. K.
Yong
and
J. R.
Vig
, in
Proceedings of the 42nd Annual Frequency Control Symposium, 1988.
(
IEEE
,
1988
), pp.
397
403
.
23.
24.
A. N.
Cleland
and
M. L.
Roukes
,
J. Appl. Phys.
92
,
2758
(
2002
).
25.
See supplementary material at http://dx.doi.org/10.1063/1.4893597 for (i) time domain analysis of noise using stochastic simulations, (ii) safe operating voltage, and (iii) parameters used for simulations.
26.
H.-J.
Butt
and
M.
Jaschke
,
Nanotechnology
6
,
1
(
1995
).
27.
M. I.
Younis
,
E. M.
Abdel-Rahman
, and
A.
Nayfeh
,
J. Microelectromech. Syst.
12
,
672
(
2003
).
28.
E. M.
Abdel-Rahman
,
M. I.
Younis
, and
A. H.
Nayfeh
,
J. Micromech. Microeng.
12
,
759
(
2002
).

Supplementary Material

You do not currently have access to this content.