Au was electrodeposited potentiostatically at 0.3 V for 5 min on nanoporous Pt nanoparticle-coated F-doped SnO2 (FTO/Pt) substrates. For comparison, Au-electrodeposited FTO (FTO/Au) and Au-uncoated FTO/Pt were prepared. FTO/Au showed large-sized Au clusters dispersed sparsely over FTO, which resulted in lower electrocatalytic activity than FTO/Pt. In contrast, FTO/Pt exhibited poor stability unlike FTO/Au due to poisoning by the adsorption of sulfur species. The Au-electrodeposited FTO/Pt (FTO/Pt/Au) consisted of small Au clusters deposited over the entire area of Pt due to the effective Au nucleation provided by nanoporous metallic Pt. FTO/Pt/Au exhibited enhanced electrocatalytic activity and excellent stability because the small Au particles well-dispersed over the nanoporous metallic Pt network provided numerous electrochemical reaction sites, and the Pt surface was not exposed to the electrolyte. When FTO/Pt/Au was used as the counter electrode (CE) of a quantum dot-sensitized solar cell, the significantly enhanced electrocatalytic activity of the FTO/Pt/Au CE facilitated the reduction reaction of Sn2− + 2e (CE) → Sn−12− + S2− at the CE/electrolyte interface, resulting in a significantly hindered recombination reaction, Sn2− + 2e (TiO2 in the photoanode) → Sn-12− + S2−, and significantly improved overall energy conversion efficiency.

1.
G.
Hodes
,
J. Phys. Chem. C
112
,
17778
(
2008
).
2.
C.-H.
Chang
and
Y.-L.
Lee
,
Appl. Phys. Lett.
91
,
053503
(
2007
).
3.
W. J.
Lee
,
S.-H.
Kang
,
S. K.
Min
,
Y.-E.
Sung
, and
S.-H.
Han
,
Electrochem. Commun.
10
,
1579
(
2008
).
4.
Q.
Shen
,
J.
Kobayashi
,
L. J.
Diguna
, and
T.
Toyoda
,
J. Appl. Phys.
103
,
084304
(
2008
).
5.
Z.
Yang
,
C.-Y.
Chen
,
P.
Roy
, and
H.-T.
Chang
,
Chem. Commun.
47
,
9561
(
2011
).
6.
S. W.
Jung
,
J.-H.
Kim
,
H.
Kim
,
C.-J.
Choi
, and
K.-S.
Ahn
,
J. Appl. Phys.
110
,
044313
(
2011
).
7.
J. G.
Radich
,
R.
Dwyer
, and
P. V.
Kamat
,
J. Phys. Chem. Lett.
2
,
2453
(
2011
).
8.
M.-H.
Yeh
,
C.-P.
Lee
,
C.-Y.
Chou
,
L.-Y.
Lin
,
H.-Y.
Wei
,
C.-W.
Chu
,
R.
Vittal
, and
K.-C.
Ho
,
Electrochim. Acta
57
,
277
(
2011
).
9.
L.-W.
Chong
,
H.-T.
Chien
, and
Y.-L.
Lee
,
J. Power Sources
195
,
5109
(
2010
).
10.
S.-Y.
Lee
,
M.-A.
Park
,
J.-H.
Kim
,
H.
Kim
,
C.-J.
Choi
,
D.-K.
Lee
, and
K.-S.
Ahn
,
J. Electrochem. Soc.
160
,
H847
(
2013
).
11.
M.
Seol
,
H.
Kim
,
Y.
Tak
, and
K.
Yong
,
Chem. Commun.
46
,
5521
(
2010
).
12.
T.
Kiyonaga
,
T.
Akita
, and
H.
Tada
,
Chem. Commun.
2009
,
2011
.
13.
L.
Wang
,
S.
Guo
,
X.
Hu
, and
S.
Dong
,
Electrochem. Commun.
10
,
95
(
2008
).
14.
G.
Duan
,
W.
Cai
,
Y.
Luo
,
Z.
Li
, and
Y.
Li
,
Appl. Phys. Lett.
89
,
211905
(
2006
).
15.
Y.
Li
and
G.
Shi
,
J. Phys. Chem. B
109
,
23787
(
2005
).
16.
J.
Haber
,
P.
Nowak
, and
P.
Żurek
,
Langmuir
19
,
196
(
2003
).
17.
S.
Guo
,
L.
Wang
, and
E.
Wang
,
Chem. Commun.
30
,
3163
(
2007
).
18.
H. S.
Kim
,
S.-W.
Jung
,
K.-S.
Ahn
, and
S. H.
Kang
,
Curr. Appl. Phys.
13
,
S162
(
2013
).
19.
M.
Wu
,
Q.
Zhang
,
J.
Xiao
,
C.
Ma
,
X.
Lin
,
C.
Miao
,
Y.
He
,
Y.
Gao
,
A.
Hagfeldt
, and
T.
Ma
,
J. Mater. Chem.
21
,
10761
(
2011
).
20.
M. S.
Faber
,
K.
Park
,
M.
Cabán-Acevedo
,
P. K.
Santra
, and
S.
Jin
,
J. Phys. Chem. Lett.
4
,
1843
(
2013
).
21.
J.-H.
Park
,
J.-Y.
Kim
,
J.-H.
Kim
,
C.-J.
Choi
,
H.
Kim
,
Y.-E.
Sung
, and
K.-S.
Ahn
,
J. Power Sources
196
,
8904
(
2011
).
You do not currently have access to this content.