The analysis of quantum mechanical confinement in recent germanium electron–hole bilayer tunnel field-effect transistors has been shown to substantially affect the band-to-band tunneling (BTBT) mechanism between electron and hole inversion layers that constitutes the operating principle of these devices. The vertical electric field that appears across the intrinsic semiconductor to give rise to the bilayer configuration makes the formerly continuous conduction and valence bands become a discrete set of energy subbands, therefore increasing the effective bandgap close to the gates and reducing the BTBT probabilities. In this letter, we present a simulation approach that shows how the inclusion of quantum confinement and the subsequent modification of the band profile results in the appearance of lateral tunneling to the underlap regions that greatly degrades the subthreshold swing of these devices. To overcome this drawback imposed by confinement, we propose an heterogate configuration that proves to suppress this parasitic tunneling and enhances the device performance.
Skip Nav Destination
,
,
,
Article navigation
25 August 2014
Research Article|
August 27 2014
Assessment of field-induced quantum confinement in heterogate germanium electron–hole bilayer tunnel field-effect transistor Available to Purchase
J. L. Padilla;
J. L. Padilla
a)
1
Nanoelectronic Devices Laboratory
, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
Search for other works by this author on:
C. Alper;
C. Alper
1
Nanoelectronic Devices Laboratory
, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
Search for other works by this author on:
F. Gámiz;
F. Gámiz
2Departamento de Electrónica y Tecnología de los Computadores,
Universidad de Granada,
Avda. Fuentenueva s/n, 18071 Granada, Spain
Search for other works by this author on:
A. M. Ionescu
A. M. Ionescu
1
Nanoelectronic Devices Laboratory
, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
Search for other works by this author on:
J. L. Padilla
1,a)
C. Alper
1
F. Gámiz
2
A. M. Ionescu
1
1
Nanoelectronic Devices Laboratory
, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
2Departamento de Electrónica y Tecnología de los Computadores,
Universidad de Granada,
Avda. Fuentenueva s/n, 18071 Granada, Spain
a)
Electronic mail: [email protected]
Appl. Phys. Lett. 105, 082108 (2014)
Article history
Received:
July 07 2014
Accepted:
August 07 2014
Connected Content
Citation
J. L. Padilla, C. Alper, F. Gámiz, A. M. Ionescu; Assessment of field-induced quantum confinement in heterogate germanium electron–hole bilayer tunnel field-effect transistor. Appl. Phys. Lett. 25 August 2014; 105 (8): 082108. https://doi.org/10.1063/1.4894088
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
Roadmap on photonic metasurfaces
Sebastian A. Schulz, Rupert. F. Oulton, et al.
Attosecond physics and technology
O. Alexander, D. Ayuso, et al.
High breakdown voltage normally off Ga2O3 transistors on silicon substrates using GaN buffer
Mritunjay Kumar, Vishal Khandelwal, et al.
Related Content
Assessment of pseudo-bilayer structures in the heterogate germanium electron-hole bilayer tunnel field-effect transistor
Appl. Phys. Lett. (June 2015)
Band-to-band tunneling distance analysis in the heterogate electron–hole bilayer tunnel field-effect transistor
J. Appl. Phys. (January 2016)
Comment on “Assessment of field-induced quantum confinement in heterogate germanium electron–hole bilayer tunnel field-effect transistor” [Appl. Phys. Lett. 105 , 082108 (2014)]
Appl. Phys. Lett. (January 2015)
Response to “Comment on ‘Assessment of field-induced quantum confinement in heterogate germanium electron–hole bilayer tunnel field-effect transistor’” [Appl. Phys. Lett. 106 , 026102 (2015)]
Appl. Phys. Lett. (January 2015)
Vertical gate-all-around junctionless nanowire transistors with asymmetric diameters and underlap lengths
Appl. Phys. Lett. (September 2014)