We report on the observation of linearly polarized single photon antibunching in the excitonic emission from a site-controlled InGaN quantum dot. The measured second order coherence function exhibits a significant dip at zero time difference, corresponding to gm2(0)=0.90 under continuous laser excitation. This relatively high value of gm2(0) is well understood by a model as the combination of short exciton life time (320 ps), limited experimental timing resolution and the presence of an uncorrelated broadband background emission from the sample. Our result provides the first rigorous evidence of InGaN quantum dot formation on hexagonal GaN pyramids, and it highlights a great potential in these dots as fast polarized single photon emitters if the background emission can be eliminated.

1.
M. D.
Eisaman
,
J.
Fan
,
A.
Migdall
, and
S. V.
Polyakov
,
Rev. Sci. Instrum.
82
,
071101
(
2011
).
2.
N.
Gisin
,
G.
Ribordy
,
W.
Tittel
, and
H.
Zbinden
,
Rev. Mod. Phys.
74
,
145
(
2002
).
3.
P.
Michler
,
A.
Kiraz
,
C.
Becher
,
W. V.
Schoenfeld
,
P. M.
Petroff
,
L.
Zhang
,
E.
Hu
, and
A.
Imamoglu
,
Science
290
,
2282
(
2000
).
4.
M. T.
Rakher
,
N. G.
Stoltz
,
L. A.
Coldren
,
P. M.
Petroff
, and
D.
Bouwmeester
,
Appl. Phys. Lett.
93
,
091118
(
2008
).
5.
D. C.
Unitt
,
A. J.
Bennett
,
P.
Atkinson
,
D. A.
Ritchie
, and
A. J.
Shields
,
Phys. Rev. B
72
,
033318
(
2005
).
6.
S.
Kremling
,
C.
Tessarek
,
H.
Dartsch
,
S.
Figge
,
S.
Hoefling
,
L.
Worschech
,
C.
Kruse
,
D.
Hommel
, and
A.
Forchel
,
Appl. Phys. Lett.
100
,
061115
(
2012
).
7.
L.
Zhang
,
C.-H.
Teng
,
T. A.
Hill
,
L.-K.
Lee
,
P.-C.
Ku
, and
H.
Deng
,
Appl. Phys. Lett.
103
,
192114
(
2013
).
8.
S.
Deshpande
and
P.
Bhattacharya
,
Appl. Phys. Lett.
103
,
241117
(
2013
).
9.
S.
Amloy
,
K. F.
Karlsson
, and
P. O.
Holtz
, e-print arXiv:1311.5731.
10.
N.
Grandjean
and
M.
Ilegems
,
Proc. IEEE
95
,
1853
(
2007
).
11.
S.
Kako
,
C.
Santori
,
K.
Hoshino
,
S.
Goetzinger
,
Y.
Yamamoto
, and
Y.
Arakawa
,
Nat. Mater.
5
,
887
(
2006
).
12.
M. J.
Holmes
,
K.
Choi
,
S.
Kako
,
M.
Arita
, and
Y.
Arakawa
,
Nano Lett.
14
,
982
(
2014
).
13.
A.
Lundskog
,
J.
Palisaitis
,
C. W.
Hsu
,
M.
Eriksson
,
K. F.
Karlsson
,
L.
Hultman
,
P. O. A.
Persson
,
U.
Forsberg
,
P. O.
Holtz
, and
E.
Janzen
,
Nanotechnology
23
,
305708
(
2012
).
14.
C.-W.
Hsu
,
A.
Lundskog
,
K. F.
Karlsson
,
U.
Forsberg
,
E.
Janzen
, and
P. O.
Holtz
,
Nano Lett.
11
,
2415
(
2011
).
15.
A.
Lundskog
,
C.-W.
Hsu
,
K. F.
Karlsson
,
A.
Supaluck
,
D.
Nilsson
,
U.
Forsberg
,
P. O.
Holtz
, and
E.
Janzn
,
Light: Sci. Appl.
3
,
e139
(
2014
).
16.
C.-W.
Hsu
,
E. S.
Moskalenko
,
M. O.
Eriksson
,
A.
Lundskog
,
K. F.
Karlsson
,
U.
Forsberg
,
E.
Janzen
, and
P. O.
Holtz
,
Appl. Phys. Lett.
103
,
013109
(
2013
).
17.
R. H.
Brown
and
Q.
Twiss
,
Nature
177
,
27
(
1956
).
18.
D.
Renker
and
E.
Lorenz
,
J. Instrum.
4
,
P04004
(
2009
).
19.
B.
Lounis
,
H.
Bechtel
,
D.
Gerion
,
P.
Alivisatos
, and
W.
Moerner
,
Chem. Phys. Lett.
329
,
399
(
2000
).
20.
R.
Brouri
,
A.
Beveratos
,
J.-P.
Poizat
, and
P.
Grangier
,
Opt. Lett.
25
,
1294
(
2000
).
21.
H.
Nakajima
,
H.
Kumano
,
H.
Iijima
, and
I.
Suemune
,
Appl. Phys. Lett.
101
,
161107
(
2012
).
You do not currently have access to this content.