We demonstrate a compact electro-absorption slow-light modulator laterally-integrated with an 850 nm vertical-cavity surface-emitting laser (VCSEL), which enables highly efficient millimeter-wave modulation. We found a strong leaky travelling wave in the lateral direction between the two cavities via widening the waveguide width with a taper shape. The small signal response of the fabricated device shows a large enhancement of over 55 dB in the modulation amplitude at frequencies beyond 35 GHz; thanks to the photon-photon resonance. A large group index of over 150 in a Bragg reflector waveguide enables the resonance at millimeter wave frequencies for 25 μm long compact modulator. Based on the modeling, we expect a resonant modulation at a higher frequency of 70 GHz. The resonant modulation in a compact slow-light modulator plays a significant key role for high efficient narrow-band modulation in the millimeter wave range far beyond the intrinsic modulation bandwidth of VCSELs.

1.
S.
Kajiya
,
K.
Ksukamoto
, and
S.
Komaki
,
IEICE Trans. Electron.
E79-C
,
496
(
1996
).
2.
B. J.
Koshy
and
P. M.
Shankar
,
IEEE Trans. Veh. Technol.
48
,
847
(
1999
).
3.
J.
Wells
,
IEEE Microwave Magn.
10
,
104
(
2009
).
5.
C.
Park
and
T. S.
Rappaport
,
IEEE Wireless Commun.
14
,
70
(
2007
).
6.
L. A.
Glasser
,
IEEE J. Quantum Electron.
16
,
525
(
1980
).
7.
K. Y.
Lau
and
A.
Yariv
,
Appl. Phys. Lett.
46
,
326
(
1985
).
8.
K. Y.
Lau
,
Appl. Phys. Lett.
52
,
2214
(
1988
).
9.
R.
Nagarajan
,
S.
Levy
,
A.
Mar
, and
J. E.
Bowers
,
IEEE Photonics. Technol. Lett.
5
,
4
(
1993
).
10.
R. S.
Tucker
,
U.
Koren
,
G.
Raybon
,
C. A.
Burrus
,
B. I.
Miller
,
T. L.
Koch
, and
G.
Eisenstein
,
Electron. Lett.
25
,
621
(
1989
).
11.
W.
Kaiser
,
L.
Bach
,
J. P.
Reithmaier
, and
A.
Forchel
,
IEEE Photonics Technol. Lett.
16
,
1997
(
2004
).
12.
K.
Iga
,
Jpn. J. Appl. Phys., Part 1
47
,
1
(
2008
).
13.
F.
Koyama
,
IEEE/OSA J. Lightwave Technol.
24
,
4502
. (
2006
).
14.
J. W.
Scott
,
B. J.
Thibeault
,
C. J.
Mahon
,
L. A.
Coldren
, and
F. H.
Peters
,
Appl. Phys. Lett.
65
,
1483
(
1994
).
15.
A.
Mutig
,
S. A.
Blokhin
,
A. M.
Nadtochiy
,
G.
Fiol
,
J. A.
Lott
,
V. A.
Shchukin
,
N. N.
Ledentsov
, and
D.
Bimberg
,
Appl. Phys. Lett.
95
,
131101
(
2009
).
16.
N.
Suzuki
,
T.
Anan
,
H.
Hatakeyama
,
K.
Fukatsu
,
K.
Yshiki
,
K.
Tokutome
,
T.
Akagawa
, and
M.
Tsuji
,
IEICE Trans. Electron.
E92-C
,
942
(
2009
).
17.
P.
Westbergh
,
R.
Safaisini
,
E.
Haglund
,
B.
Kogel
,
J. S.
Gustavsson
,
A.
Larsson
,
M.
Geen
,
R.
Lawrence
, and
A.
Joel
,
Electron. Lett.
48
,
1145
(
2012
).
18.
A.
Larsson
,
IEEE J. Sel. Top. Quantum Electron.
17
,
1552
(
2011
).
19.
X.
Zhao
,
Y.
Zhou
,
C. J.
Chang-Hasnain
,
W.
Hofmann
, and
M. C.
Amann
,
Opt. Express
14
,
10500
(
2006
).
20.
L.
Chrostowski
,
X.
Zhao
, and
C. J.
Chang-Hasnain
,
IEEE Trans. Microwave Theory Tech.
54
,
788
(
2006
).
21.
C.
Chen
and
K. D.
Choquette
,
IEEE J. Lightwave Technol.
28
,
1003
(
2010
).
22.
T. D.
Germann
,
W.
Hofmann
,
A. M.
Nadtochiy
,
J. H.
Schulze
,
A.
Mutig
,
A.
Strittmatter
, and
D.
Bimberg
,
Opt. Express
20
,
5099
(
2012
).
23.
C. Z.
Ning
and
P.
Goorjian
,
J. Appl. Phys.
90
,
497
(
2001
).
25.
R.
Gordon
,
A. P.
Heberle
, and
J. R. A.
Cleaver
,
Appl. Phys. Lett.
81
,
4523
(
2002
).
26.
H.
Dalir
and
F.
Koyama
,
Appl. Phys. Lett.
103
,
091109
(
2013
).
27.
H.
Dalir
and
F.
Koyama
,
Appl. Phys. Express
7
,
022102
(
2014
).
28.
H.
Dalir
and
F.
Koyama
,
Electronics Lett.
50
,
823
(
2014
).
29.
H.
Dalir
,
Y.
Takahashi
, and
F.
Koyama
,
Electron. Lett.
50
,
101
(
2014
).
30.
X.
Gu
,
S.
Shimizu
,
T.
Shimada
,
A.
Matsutani
, and
F.
Koyama
,
Appl. Phys. Lett.
102
,
031118
(
2013
).
31.
E. L.
Gordon
and
J. D.
Rigden
,
Bell Syst. Tech. J.
42
,
155
(
1963
).
You do not currently have access to this content.