We investigate the effect of electrostatic gating on the thermoelectric power factor of p-type Si nanowires (NWs) of up to 20 nm in diameter in the [100], [110], and [111] crystallographic transport orientations. We use atomistic tight-binding simulations for the calculation of the NW electronic structure, coupled to linearized Boltzmann transport equation for the calculation of the thermoelectric coefficients. We show that gated NW structures can provide ∼5× larger thermoelectric power factor compared to doped channels, attributed to their high hole phonon-limited mobility, as well as gating induced bandstructure modifications which further improve mobility. Despite the fact that gating shifts the charge carriers near the NW surface, surface roughness scattering is not strong enough to degrade the transport properties of the accumulated hole layer. The highest power factor is achieved for the [111] NW, followed by the [110], and finally by the [100] NW. As the NW diameter increases, the advantage of the gated channel is reduced. We show, however, that even at 20 nm diameters (the largest ones that we were able to simulate), a ∼3× higher power factor for gated channels is observed. Our simulations suggest that the advantage of gating could still be present in NWs with diameters of up to ∼40 nm.

1.
A. I.
Hochbaum
,
R.
Chen
,
R. D.
Delgado
,
W.
Liang
,
E. C.
Garnett
,
M.
Najarian
,
A.
Majumdar
, and
P.
Yang
,
Nature
451
,
163
168
(
2008
).
2.
A. I.
Boukai
,
Y.
Bunimovich
,
J.
Tahir-Kheli
,
J.-K.
Yu
,
W. A.
Goddard
 III
, and
J. R.
Heath
,
Nature
451
,
168
171
(
2008
).
3.
R.
Venkatasubramanian
,
E.
Siivola
,
T.
Colpitts
, and
B. O’
Quinn
,
Nature
413
,
597
602
(
2001
).
4.
W.
Kim
,
S. L.
Singer
,
A.
Majumdar
,
D.
Vashaee
,
Z.
Bian
,
A.
Shakouri
,
G.
Zeng
,
J. E.
Bowers
,
J. M. O.
Zide
, and
A. C.
Gossard
,
Appl. Phys. Lett.
88
,
242107
(
2006
).
5.
D.
Li
,
Y.
Wu
,
R.
Fang
,
P.
Yang
, and
A.
Majumdar
,
Appl. Phys. Lett.
83
(
15
),
3186
3188
(
2003
).
6.
G.
Zeng
,
J. E.
Bowers
,
J. M. O.
Zide
,
A. C.
Gossard
,
W.
Kim
,
S.
Singer
,
A.
Majumdar
,
R.
Singh
,
Z.
Bian
,
Y.
Zhang
, and
A.
Shakouri
,
Appl. Phys. Lett.
88
,
113502
(
2006
).
7.
J.
Tang
,
H.-T.
Wang
,
D. H.
Lee
,
M.
Fardy
,
Z.
Huo
,
T. P.
Russell
, and
P.
Yang
,
Nano Lett.
10
(
10
),
4279
4283
2010
.
8.
L. D.
Zhao
,
S. H.
Lo
,
J. Q.
He
,
L.
Hao
,
K.
Biswas
,
J.
Androulakis
,
C. I.
Wu
,
T. P.
Hogan
,
D. Y.
Chung
,
V. P.
Dravid
, and
M. G.
Kanatzidis
,
J. Am. Chem. Soc.
133
,
20476
20487
(
2011
).
9.
C. J.
Vineis
,
A.
Shakouri
,
A.
Majumdar
, and
M. C.
Kanatzidis
,
Adv. Mater.
22
,
3970
3980
(
2010
).
10.
Y.
He
,
D.
Donadio
, and
G.
Galli
,
Nano Lett.
11
(
9
),
3608
3611
(
2011
).
11.
D.
Narducci
,
E.
Selezneva
,
G.
Cerofolini
,
E.
Romano
,
R.
Tonini
, and
G.
Ottaviani
,
Mater. Res. Soc. Symp. Proc.
1314
,
mrsf10-1314-ll05-16
(
2010
).
12.
L. D.
Hicks
and
M. S.
Dresselhaus
,
Phys. Rev. B
47
,
16631
(
1993
).
13.
G. D.
Mahan
and
J. O.
Sofo
,
Proc. Natl. Acad. Sci. USA
93
,
7436
7439
(
1996
).
14.
D.
Vashaee
and
A.
Shakouri
,
Phys. Rev. Lett.
92
,
106103
(
2004
).
15.
N.
Neophytou
and
H.
Kosina
,
Phys. Rev. B
83
,
245305
(
2011
).
16.
M.
Zebarjadi
,
G.
Joshi
,
G.
Zhu
,
B.
Yu
,
A.
Minnich
,
Y.
Lan
,
X.
Wang
,
M.
Dresselhaus
,
Z.
Ren
, and
G.
Chen
,
Nano Lett.
11
(
6
),
2225
2230
(
2011
).
17.
B.
Yu
,
M.
Zebarjadi
,
H.
Wang
,
K.
Lukas
,
H.
Wang
,
D.
Wang
,
C.
Opeil
,
M.
Dresselhaus
,
G.
Chen
, and
Z.
Ren
,
Nano Lett.
12
(
4
),
2077
2082
(
2012
).
18.
B. M.
Curtin
,
E. A.
Codecido
,
S.
Krämer
, and
J. E.
Bowers
,
Nano Lett.
13
(
11
),
5503
5508
(
2013
).
19.
Y.
Tian
,
M. R.
Sakr
,
J. M.
Kinder
,
D.
Liang
,
M. J.
MacDonald
,
R. L. J.
Qiu
,
H.-J.
Gao
, and
X. P. A.
Gao
,
Nano Lett.
12
(
12
),
6492
6497
(
2012
).
20.
J.
Moon
,
J.-H.
Kim
,
Z. C. Y.
Chen
,
J.
Xiang
, and
R.
Chen
,
Nano Lett.
13
(
3
),
1196
1202
(
2013
).
21.
B. M.
Curtin
and
J. E.
Bowers
,
J. Appl. Phys.
115
,
143704
(
2014
).
22.
W.
Liang
,
A. I.
Hochbaum
,
M.
Fardy
,
O.
Rabin
,
M.
Zhang
, and
P.
Yang
,
Nano Lett.
9
(
4
),
1689
1693
(
2009
).
23.
N.
Neophytou
,
O.
Baumgartner
,
Z.
Stanojevic
, and
H.
Kosina
,
Solid State Electron.
90
,
44
50
(
2013
).
24.
See supplementary material at http://dx.doi.org/10.1063/1.4893977 for the description of the model and theory, and for the corresponding [111] nanowire thermoelectric properties.
25.
A. K.
Buin
,
A.
Verma
, and
M. P.
Anantram
,
J. Appl. Phys.
104
,
053716
(
2008
).
26.
L.
Donetti
,
F.
Gamiz
,
N.
Rodriquez
, and
A.
Godoy
,
IEEE Electron. Device Lett.
30
(
12
),
1338
(
2009
).
27.
R. J.
van Overstraeten
and
R. P.
Mertens
,
Solid State Electron.
30
(
11
),
1077
1087
(
1987
).
28.
N.
Neophytou
and
H.
Kosina
,
Nano Lett.
10
,
4913
(
2010
).
29.
J.-A.
Yan
,
L.
Yang
, and
M. Y.
Chou
,
Phys. Rev. B
76
,
115319
(
2007
).
30.
H.
Ryu
,
Z.
Aksamija
,
D.
Paskiewicz
,
S.
Scott
,
M.
Lagally
,
I.
Knezevic
, and
M.
Eriksson
,
Phys. Rev. Lett.
105
,
256601
(
2010
).
31.
T. T. M.
Vo
,
A. J.
Williamson
,
V.
Lordi
, and
G.
Galli
,
Nano Lett.
8
(
4
),
1111
1114
(
2008
).

Supplementary Material

You do not currently have access to this content.