Using a commercial ellipsometer and analytical inversion, we show that both linear and circular birefringence-dichroism pairs can be extracted from a single generalized ellipsometry measurement, providing a complete description of the polarization properties of anisotropic chiral films, which is a distinct advantage over typical circular dichroism measurements. This is demonstrated by measuring the anisotropic optical parameters of post-like and helical composite Ti/Ag thin films fabricated by dynamic shadowing growth. These films are both chiral and highly aligned, and the measured linear and circular birefringence-dichroism pairs scale with the shape anisotropy and chirality. Furthermore, because the total polarization anisotropy is measured through generalized ellipsometry, we are able to determine that the polarization eigenstates can be effectively tuned from purely circular to approximately linear by changing the pitch number, N, of plasmonic helices for N ≤ 1.

1.
V. K.
Valev
,
J. J.
Baumberg
,
C.
Sibilia
, and
T.
Verbiest
,
Adv. Mater.
25
(
18
),
2517
2534
(
2013
).
2.
E.
Hendry
,
T.
Carpy
,
J.
Johnston
,
M.
Popland
,
R.
Mikhaylovskiy
,
A.
Lapthorn
,
S.
Kelly
,
L.
Barron
,
N.
Gadegaard
, and
M.
Kadodwala
,
Nat. Nanotechnol.
5
(
11
),
783
787
(
2010
).
3.
B.
Wang
,
T.
Koschny
, and
C. M.
Soukoulis
,
Phys. Rev. B
80
(
3
),
033108
(
2009
).
4.
J.
Schellman
and
H. P.
Jensen
,
Chem. Rev.
87
(
6
),
1359
1399
(
1987
).
5.
M.
Hentschel
,
M.
Schaferling
,
T.
Weiss
,
N.
Liu
, and
H.
Giessen
,
Nano Lett.
12
(
5
),
2542
2547
(
2012
).
6.
H.-G.
Kuball
,
Enantiomer
7
(
4–5
),
197
205
(
2002
).
7.
H.
Fujiwara
,
Spectroscopic Ellipsometry: Principles and Applications
(
John Wiley & Sons
,
2007
).
8.

Note that some references make the distinction between measurements made in reflection or transmission, calling the former ellipsometry and the latter polarimetry; we do not make this distinction.

9.
H.
Tompkins
and
E. A.
Irene
,
Handbook of Ellipsometry
(
William Andrew
,
2005
).
10.
R. M.
Azzam
and
N. M.
Bashara
,
Ellipsometry and Polarized Light
(
Elsevier Science Publishing Co., Inc.
,
North-Holland
,
1987
).
11.
R. C.
Jones
,
J. Opt. Soc. Am.
38
(
8
),
671
683
(
1948
).
12.
S.-Y.
Lu
and
R. A.
Chipman
,
J. Opt. Soc. Am. A
11
(
2
),
766
773
(
1994
).
13.
O.
Arteaga
and
A.
Canillas
,
J. Opt. Soc. Am. A
26
(
4
),
783
793
(
2009
).
14.
O.
Arteaga
and
A.
Canillas
,
Opt. Lett.
35
(
4
),
559
561
(
2010
).
15.
See supplementary material at http://dx.doi.org/10.1063/1.4893785 for additional considerations when converting experimentally obtained data and for fabrication details.
16.
K.
Robbie
,
J.
Sit
, and
M.
Brett
,
J. Vac. Sci. Technol. B
16
(
3
),
1115
1122
(
1998
).
17.
G.
Larsen
,
Y.
He
,
W.
Ingram
, and
Y.
Zhao
,
Nano Lett.
13
(
12
),
6228
6232
(
2013
).
18.
Y.
He
,
G. K.
Larsen
,
W.
Ingram
, and
Y.
Zhao
,
Nano Lett.
14
(
4
),
1976
1981
(
2014
).
19.
G.
Larsen
,
Y.
He
,
W.
Ingram
,
E.
LaPaquette
,
J.
Wang
, and
Y.
Zhao
,
Nanoscale
6
(
16
),
9467
9476
(
2014
).
20.
S.
Mukherjee
and
D.
Gall
,
Thin Solid Films
527
(
0
),
158
163
(
2013
).
21.
Z.
Fan
and
A. O.
Govorov
,
Nano Lett.
12
(
6
),
3283
3289
(
2012
).
22.
B.
Frank
,
X.
Yin
,
M.
Schäferling
,
J.
Zhao
,
S. M.
Hein
,
P. V.
Braun
, and
H.
Giessen
,
ACS Nano
7
(
7
),
6321
6329
(
2013
).
23.
Y.
Cui
,
L.
Kang
,
S.
Lan
,
S.
Rodrigues
, and
W.
Cai
,
Nano Lett.
14
(
2
),
1021
1025
(
2014
).
24.
G. K.
Larsen
,
Y.
He
,
J.
Wang
, and
Y.
Zhao
,
Adv. Opt. Mater.
2
(
3
),
245
249
(
2014
).
25.
C.
Sönnichsen
,
B. M.
Reinhard
,
J.
Liphardt
, and
A. P.
Alivisatos
,
Nat. Biotechnol.
23
(
6
),
741
745
(
2005
).

Supplementary Material

You do not currently have access to this content.