The impact of a large negative quantum well gain-to-cavity etalon wavelength detuning on the static and dynamic characteristics of 850 nm InGaAlAs high-speed oxide-confined vertical-cavity surface-emitting lasers (VCSELs) was investigated. Three distinct lasing regimes were revealed in large square aperture (≥7 μm per side) devices with large detuning including: (1) an anomalous lasing via higher order Hermite–Gaussian modes at low forward bias current; (2) lasing via the lowest order Hermite–Gaussian modes at high bias current; and (3) simultaneous lasing via both types of transverse modes at intermediate bias currents. In contrast to conventional multimode VCSELs a two-resonance modulation response was observed for the case of co-lasing via multiple transverse modes with high spectral separation. The reduction in the oxide aperture area resulted in classical lasing via the lowest order modes with a conventional single-resonance frequency response.
Skip Nav Destination
,
,
,
,
,
,
,
,
,
Article navigation
11 August 2014
Research Article|
August 11 2014
Anomalous lasing of high-speed 850 nm InGaAlAs oxide-confined vertical-cavity surface-emitting lasers with a large negative gain-to-cavity wavelength detuning Available to Purchase
S. A. Blokhin;
S. A. Blokhin
a)
1
A. F. Ioffe Physical-Technical Institute of the Russian Academy of Sciences
, 26 Polytekhnicheskaya Street, Saint Petersburg 194021, Russian Federation
Search for other works by this author on:
M. A. Bobrov;
M. A. Bobrov
1
A. F. Ioffe Physical-Technical Institute of the Russian Academy of Sciences
, 26 Polytekhnicheskaya Street, Saint Petersburg 194021, Russian Federation
Search for other works by this author on:
N. A. Maleev;
N. A. Maleev
1
A. F. Ioffe Physical-Technical Institute of the Russian Academy of Sciences
, 26 Polytekhnicheskaya Street, Saint Petersburg 194021, Russian Federation
Search for other works by this author on:
A. G. Kuzmenkov;
A. G. Kuzmenkov
1
A. F. Ioffe Physical-Technical Institute of the Russian Academy of Sciences
, 26 Polytekhnicheskaya Street, Saint Petersburg 194021, Russian Federation
2Submicron Heterostructures for Microelectronics,
Research and Engineering Center of the Russian Academy of Sciences
, 26 Polytekhnicheskaya Street, Saint Petersburg 194021, Russian Federation
Search for other works by this author on:
A. V. Sakharov;
A. V. Sakharov
1
A. F. Ioffe Physical-Technical Institute of the Russian Academy of Sciences
, 26 Polytekhnicheskaya Street, Saint Petersburg 194021, Russian Federation
Search for other works by this author on:
A. A. Blokhin;
A. A. Blokhin
3
Saint Petersburg State Polytechnical University
, 29 Polytekhnicheskaya Street, Saint Petersburg 195251, Russian Federation
Search for other works by this author on:
P. Moser;
P. Moser
4Zentrum für Nanophotonik,
Technische Universität Berlin
, Hardenbergstrasse 36, Berlin 10623, Federal Republic of Germany
Search for other works by this author on:
J. A. Lott;
J. A. Lott
4Zentrum für Nanophotonik,
Technische Universität Berlin
, Hardenbergstrasse 36, Berlin 10623, Federal Republic of Germany
Search for other works by this author on:
D. Bimberg;
D. Bimberg
4Zentrum für Nanophotonik,
Technische Universität Berlin
, Hardenbergstrasse 36, Berlin 10623, Federal Republic of Germany
5Electric and Computer Engineering Department,
King Abdul-Aziz University
, Jeddah 21589, Kingdom of Saudi Arabia
Search for other works by this author on:
V. M. Ustinov
V. M. Ustinov
1
A. F. Ioffe Physical-Technical Institute of the Russian Academy of Sciences
, 26 Polytekhnicheskaya Street, Saint Petersburg 194021, Russian Federation
Search for other works by this author on:
S. A. Blokhin
1,a)
M. A. Bobrov
1
N. A. Maleev
1
A. G. Kuzmenkov
1,2
A. V. Sakharov
1
A. A. Blokhin
3
P. Moser
4
J. A. Lott
4
D. Bimberg
4,5
V. M. Ustinov
1
1
A. F. Ioffe Physical-Technical Institute of the Russian Academy of Sciences
, 26 Polytekhnicheskaya Street, Saint Petersburg 194021, Russian Federation
2Submicron Heterostructures for Microelectronics,
Research and Engineering Center of the Russian Academy of Sciences
, 26 Polytekhnicheskaya Street, Saint Petersburg 194021, Russian Federation
3
Saint Petersburg State Polytechnical University
, 29 Polytekhnicheskaya Street, Saint Petersburg 195251, Russian Federation
4Zentrum für Nanophotonik,
Technische Universität Berlin
, Hardenbergstrasse 36, Berlin 10623, Federal Republic of Germany
5Electric and Computer Engineering Department,
King Abdul-Aziz University
, Jeddah 21589, Kingdom of Saudi Arabia
a)
Electronic mail: [email protected]
Appl. Phys. Lett. 105, 061104 (2014)
Article history
Received:
February 27 2014
Accepted:
July 31 2014
Citation
S. A. Blokhin, M. A. Bobrov, N. A. Maleev, A. G. Kuzmenkov, A. V. Sakharov, A. A. Blokhin, P. Moser, J. A. Lott, D. Bimberg, V. M. Ustinov; Anomalous lasing of high-speed 850 nm InGaAlAs oxide-confined vertical-cavity surface-emitting lasers with a large negative gain-to-cavity wavelength detuning. Appl. Phys. Lett. 11 August 2014; 105 (6): 061104. https://doi.org/10.1063/1.4892885
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
Attosecond physics and technology
O. Alexander, D. Ayuso, et al.
Significant improvement of breakdown voltage of Al0.86Ga0.14N Schottky barrier diodes by atomic layer etching
Tingang Liu, Zhiyuan Liu, et al.
Roadmap on photonic metasurfaces
Sebastian A. Schulz, Rupert. F. Oulton, et al.
Related Content
Polarization‐insensitive field‐induced refractive index change using a lattice‐matched InGaAlAs/InAlAs multiple quantum well structure
Appl. Phys. Lett. (December 1996)
Growth of InAlAs/InGaAs and InGaAlAs/InGaAs heterojunction bipolar transistors on Si‐implanted InP substrates by molecular beam epitaxy
J. Appl. Phys. (March 1992)
Controlled spontaneous lifetime in microcavity confined InGaAlAs/GaAs quantum dots
Appl. Phys. Lett. (April 1998)
G-J study for GRIN InGaAlAs/InP lasing nano-heterostructures
AIP Conf. Proc. (June 2013)
Low nonlinear gain in InGaAs/InGaAlAs separate confinement multiquantum well lasers
Appl. Phys. Lett. (December 1991)