The effect of realistic metal electronic structure on the lower limit of resistivity in [100] oriented n-Si is investigated using full band Density Functional Theory and Semi-Empirical Tight Binding calculations. It is shown that the “ideal metal” assumption may fail in some situations and, consequently, underestimate the lower limit of contact resistivity in n-Si by at least an order of magnitude at high doping concentrations. The mismatch in transverse momentum space in the metal and the semiconductor, the so-called “valley filtering effect,” is shown to be sensitive to the details of the transverse boundary conditions for the unit cells used. The results emphasize the need for explicit inclusion of the metal atomic and electronic structure in the atomistic modeling of transport across metal-semiconductor contacts.

1.
“International technology roadmap for semiconductors - front end processes,”
2011
.
2.
A.
Yu
, “
Electron tunneling and contact resistance of metal-silicon contact barriers
,”
Solid-State Electron.
13
,
239
247
(
1970
).
3.
D. J.
Griffiths
,
Introduction to Quantum Mechanics: Pearson New International Edition
(
Pearson Education Limited
,
2013
).
4.
J.
Maassen
,
C.
Jeong
,
A.
Baraskar
,
M.
Rodwell
, and
M.
Lundstrom
, “
Full band calculations of the intrinsic lower limit of contact resistivity
,”
Appl. Phys. Lett.
102
,
111605
(
2013
).
5.
F. A.
Trumbore
, “
Solid solubilities of impurity elements in germanium and silicon*
,”
Bell Syst. Tech. J.
39
,
205
233
(
1960
).
6.
C.
Weber
, “
The importance of metal transverse momentum for silicon contact resistivity
,”
Appl. Phys. Lett.
103
,
193505
(
2013
).
7.
S.-H.
Park
,
N.
Kharche
,
D.
Basu
,
Z.
Jiang
,
S.
Nayak
,
C.
Weber
,
G.
Hegde
,
K.
Haume
,
T.
Kubis
,
M.
Povolotskyi
 et al., “
Scaling effect on specific contact resistivity in nano-scale metal-semiconductor contacts
,” in
Device Research Conference (DRC), 2013 71st Annual
(
IEEE
,
2013
), pp.
125
126
.
8.
Q.
Gao
and
J.
Guo
, “
Ab initio quantum transport simulation of silicide-silicon contacts
,”
J. Appl. Phys.
111
,
014305
(
2012
).
9.
R.
Tung
,
F.
Schrey
, and
S.
Yalisove
, “
Homoepitaxial growth of CoSi2 and NiSi2 on (100) and (110) surfaces at room temperature
,”
Appl. Phys. Lett.
55
,
2005
2007
(
1989
).
10.
T. B.
Boykin
,
G.
Klimeck
, and
F.
Oyafuso
, “
Valence band effective-mass expressions in the sp3d5s* empirical tight-binding model applied to a Si and Ge parametrization
,”
Phys. Rev. B
69
,
115201
(
2004
).
11.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
12.
“Atomistix toolkit version 13.8.0 Quantumwise A/S,”
2014
.
13.

“The ITRS requirement for contact resistivity is for a single contact although contact resistivity measurements contain the effect of source and drain contact resistances.”

14.
T. B.
Boykin
and
G.
Klimeck
, “
Practical application of zone-folding concepts in tight-binding calculations
,”
Phys. Rev. B
71
,
115215
(
2005
).
15.
G.
Hegde
,
M.
Povolotskyi
,
T.
Kubis
,
J.
Charles
, and
G.
Klimeck
, “
An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. II. Application-effect of quantum confinement and homogeneous strain on Cu conductance
,”
J. Appl. Phys.
115
,
123704
(
2014
).
16.
G.
Hegde
,
M.
Povolotskyi
,
T.
Kubis
,
T.
Boykin
, and
G.
Klimeck
, “
An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. I. Model and validation
,”
J. Appl. Phys.
115
,
123703
(
2014
).
17.
Y.
Ke
,
K.
Xia
, and
H.
Guo
, “
Oxygen-vacancy-induced diffusive scattering in Fe/MgO/Fe magnetic tunnel junctions
,”
Phys. Rev. Lett.
105
,
236801
(
2010
).
18.
R.
Hatcher
and
C.
Bowen
, “Role of microscopic parity on the mesoscopic spatial distribution of confined carrier states” (unpublished).
19.
J.
Fonseca
,
T.
Kubis
,
M.
Povolotskyi
,
B.
Novakovic
,
A.
Ajoy
,
G.
Hegde
,
H.
Ilatikhameneh
,
Z.
Jiang
,
P.
Sengupta
,
Y.
Tan
 et al., “
Efficient and realistic device modeling from atomic detail to the nanoscale
,”
J. Comput. Electron.
12
,
592
600
(
2013
).
You do not currently have access to this content.