Solid-state nucleation of Si nanocrystals in a SiO2 bilayered matrix was observed at temperatures as low as 450 °C. This was achieved by aberration corrected high-resolution transmission electron microscopy (HRTEM) with real-time in-situ heating up to 600 °C. This technique is a valuable characterization tool especially with the recent interest in Si nanostructures for light emitting devices, non-volatile memories, and third-generation photovoltaics which all typically require a heating step in their fabrication. The control of size, shape, and distribution of the Si nanocrystals are critical for these applications. This experimental study involves in-situ observation of the nucleation of Si nanocrystals in a SiO2 bilayered matrix fabricated through radio frequency co-sputtering. The results show that the shapes of Si nanocrystals in amorphous SiO2 bilayered matrices are irregular and not spherical, in contrast to many claims in the literature. Furthermore, the Si nanocrystals are well confined within their layers by the amorphous SiO2. This study demonstrates the potential of in-situ HRTEM as a tool to observe the real time nucleation of Si nanocrystals in a SiO2 bilayered matrix. Furthermore, ideas for improvements on this in-situ heating HRTEM technique are discussed.

1.
L.
Pavesi
,
L. Dal
Negro
,
C.
Mazzoleni
,
G.
Franzo
, and
F.
Priolo
,
Nature
408
,
440
444
(
2000
).
2.
J.
Ruan
,
P. M.
Fauchet
,
L. Dal
Negro
,
M.
Cazzanelli
, and
L.
Pavesi
,
Appl. Phys. Lett.
83
(
26
),
5479
(
2003
).
3.
S.
Tiwari
,
F.
Rana
,
K.
Chan
,
L.
Shi
, and
H.
Hanafi
,
Appl. Phys. Lett.
69
(
9
),
1232
(
1996
).
4.
S.
Tiwari
,
F.
Rana
,
H.
Hanafi
,
A.
Hartstein
,
E. F.
Crabbé
, and
K.
Chan
,
Appl. Phys. Lett.
68
(
10
),
1377
(
1996
).
5.
M. A.
Green
,
Third Generation Photovoltaics: Advanced Solar Energy Conversion
(
Springer, Berlin
,
Heidelberg
,
2003
).
6.
G.
Conibeer
,
Mater. Today
10
(
11
),
42
50
(
2007
).
7.
M. A.
Green
,
G.
Conibeer
,
E.-C.
Cho
,
D.
Konig
,
S.
Huang
,
D.
Song
,
G.
Scardera
,
Y.-H.
Cho
,
T.
Fangsuwannarak
,
Y.
Huang
,
E.
Pink
,
D.
Bellet
,
E.
Bellet-Amalric
, and
T.
Puzzer
, in
22nd European Photovoltaic Solar Energy Conference
(
Milan
,
Italy
,
2007
), pp.
1
4
.
8.
E. C.
Cho
,
S.
Park
,
X.
Hao
,
D.
Song
,
G.
Conibeer
,
S. C.
Park
, and
M. A.
Green
,
Nanotechnology
19
(
24
),
245201
(
2008
).
9.
S. K.
Shrestha
,
P.
Aliberti
, and
G. J.
Conibeer
,
Sol. Energy Mater. Sol. Cells
94
(
9
),
1546
1550
(
2010
).
10.
J.
Heitmann
,
F.
Müller
,
M.
Zacharias
, and
U.
Gösele
,
Adv. Mater.
17
(
7
),
795
803
(
2005
).
11.
G.
Conibeer
,
M.
Green
,
E.-C.
Cho
,
D.
König
,
Y.-H.
Cho
,
T.
Fangsuwannarak
,
G.
Scardera
,
E.
Pink
,
Y.
Huang
,
T.
Puzzer
,
S.
Huang
,
D.
Song
,
C.
Flynn
,
S.
Park
,
X.
Hao
, and
D.
Mansfield
,
Thin Solid Films
516
(
20
),
6748
6756
(
2008
).
12.
M.
Zacharias
,
J.
Heitmann
,
R.
Scholz
,
U.
Kahler
,
M.
Schmidt
, and
J.
Blaüsing
,
Appl. Phys. Lett.
80
(
4
),
661
(
2002
).
13.
P.
Loper
,
M.
Canino
,
J.
Lopez-Vidrier
,
M.
Schnabel
,
A.
Witzky
,
M.
Belletato
,
M.
Allegrezza
,
D.
Hiller
,
A.
Hartel
,
S.
Gutsch
,
S.
Hernandez
,
R.
Guerra
,
S.
Ossicini
,
B.
Garrido
,
S.
Janz
, and
M.
Zacharias
, paper presented at the
27th European Photovoltaic Solar Energy Conference and Exhibition
, Munich, Germany, 24–28 September
2012
.
14.
J.
Xu
,
K.
Makihara
,
H.
Deki
, and
S.
Miyzazki
,
Solid State Commun.
149
(
19–20
),
739
742
(
2009
).
15.
N.
Pauc
,
V.
Calvo
,
J.
Eymery
,
F.
Fournel
, and
N.
Magnea
,
Phys. Rev. B
72
,
205325
(
2005
).
16.
D. I.
Tetelbaum
,
O. N.
Groshkov
,
S. A.
Trushun
,
D. G.
Revin
,
D. M.
Gaponov
, and
W.
Eckstein
,
Nanotechnology
11
,
295
297
(
2000
).
17.
F.
Yun
,
B. J.
Hinds
,
S.
Hatatani
,
S.
Oda
,
Q. X.
Zhao
, and
M.
Willander
,
Thin Solid Films
375
,
137
141
(
2000
).
18.
H.
Seifarth
,
R.
Grotzschel
,
A.
Markwitz
,
W.
Matz
,
P.
Nitzche
, and
L.
Rebohle
,
Thin Solid Films
330
,
202
205
(
1998
).
19.
I.
Perez-Wurfl
,
X.
Hao
,
A.
Gentle
,
D.-H.
Kim
,
G.
Conibeer
, and
M. A.
Green
,
Appl. Phys. Lett.
95
(
15
),
153506
(
2009
).
20.
D.
Van Dyck
,
S.
Van Aert
,
A. J. den
Dekker
, and
A. van den
Bos
,
Ultramicroscopy
98
(
1
),
27
42
(
2003
).
21.
C. R.
Perrey
,
S.
Thompson
,
M.
Lentzen
,
U.
Kortshagen
, and
C. B.
Carter
,
J. Non-Cryst. Solids
343
(
1–3
),
78
84
(
2004
).
22.
G.
Conibeer
,
M. A.
Green
,
R.
Corkish
,
Y.
Cho
,
E.-C.
Cho
,
C.-W.
Jiang
,
T.
Fangsuwannarak
,
E.
Pink
,
Y.
Huang
,
T.
Puzzer
,
T.
Trupke
,
B.
Richards
,
A.
Shalav
, and
K.-L.
Lin
,
Thin Solid Films
511–512
,
654
662
(
2006
).
23.
H.
Akatsu
and
I.
Ohdomari
,
Appl. Surf. Sci.
41–42
,
357
364
(
1990
).
24.
C.
Cesari
,
A.
Charai
, and
C.
Nihoul
,
Ultramicroscopy
18
,
291
296
(
1985
).
25.
E.-C.
Cho
,
M. A.
Green
,
J.
Xia
,
R.
Corkish
, and
A.
Nikulin
,
J. Appl. Phys.
96
(
6
),
3211
(
2004
).
26.
A.
Yurtsever
,
M.
Weyland
, and
D. A.
Muller
,
Appl. Phys. Lett.
89
(
15
),
151920
(
2006
).
27.
L.
Nikolova
,
R. G.
Saint-Jacques
, and
G. G.
Ross
,
Ultramicroscopy
110
(
2
),
144
150
(
2010
).
28.
G.
Nicotra
,
R. A.
Puglisi
,
S.
Lombardo
, and
C.
Spinella
,
J. Appl. Phys.
95
(
4
),
2049
(
2004
).
29.
A.
Zelenina
,
S. A.
Dyakov
,
D.
Hiller
,
S.
Gutsch
,
V.
Trouillet
,
M.
Bruns
,
S.
Mirabella
,
P.
Löper
,
L.
López-Conesa
,
J.
López-Vidrier
,
S.
Estradé
,
F.
Peiró
,
B.
Garrido
,
J.
Blaüsing
,
A.
Krost
,
D. M.
Zhigunov
, and
M.
Zacharias
,
J. Appl. Phys.
114
(
18
),
184311
(
2013
).
30.
X. J.
Hao
,
E. C.
Cho
,
G.
Scardera
,
Y. S.
Shen
,
E.
Bellet-Amalric
,
D.
Bellet
,
G.
Conibeer
, and
M. A.
Green
,
Sol. Energy Mater. Sol. Cells
93
(
9
),
1524
1530
(
2009
).
31.
V. Y.
Kolosov
,
C. L.
Schwamm
,
R. V.
Gainutdinov
, and
A. L.
Tolstikhina
,
J. Phys.: Conf. Ser.
100
(
8
),
082037
(
2008
).
32.
O. I.
Lebedev
and
G.
Van Tendeloo
,
AIP Conf. Proc.
999
,
245
(
2008
).
33.
X. J.
Hao
,
A. P.
Podhorodecki
,
Y. S.
Shen
,
G.
Zatryb
,
J.
Misiewicz
, and
M. A.
Green
,
Nanotechnology
20
(
48
),
485703
(
2009
).
34.
D.
Di
,
H.
Xu
,
I.
Perez-Wurfl
,
M. A.
Green
, and
G.
Conibeer
,
Prog. Photovoltaics: Res. Appl.
21
,
569
577
(
2013
).
35.
B.
Sain
and
D.
Das
,
Phys. Chem. Chem. Phys.
15
(
11
),
3881
3888
(
2013
).
You do not currently have access to this content.