This Letter reports electrical measurements as well as electrically detected magnetic resonance (EDMR) studies of defects created at the SiC/SiO2 interface of a lateral 4H-SiC n-channel metal-oxide-semiconductor field-effect transistor (MOSFET) by hot carrier stress (HCS). Both charge pumping (CP) and mobility measurements indicate severe device degradation due to the electrical stress. In accordance with the electrical measurements, a large increase in the EDMR amplitude by a factor of 27 was observed after 106 s of HCS. The defect observed in the unstressed device is anisotropic with gB||c = 2.0045(4) and gBc = 2.0020(4). After the stress, the g-value changes to gB||c = 2.0059(4) and gBc = 2.0019(4). During HCS, most defects are created near the n-doped drain region of the device. In this region, the crystalline structure of the SiC is distorted due to incorporation of N close to the amorphous dose. The distortion could explain the slight change in the g-value with the dominating defect or defect family remaining the same before and after stress. Although the precise structure of the defect could not be identified due to overlapping spectra and limited measurement resolution, the strong hyperfine side peaks suggest a N related defect.

1.
T. H.
Ning
,
C. M.
Osburn
, and
H. N.
Yu
,
J. Appl. Phys.
48
,
286
(
1977
).
2.
T. H.
Ning
,
Solid-State Electron.
21
,
273
(
1978
).
3.
M. G.
Ancona
,
N. S.
Saks
, and
D.
McCarthy
,
IEEE Trans. Electron Devices
35
,
2221
(
1988
).
4.
T.
Aichinger
and
M.
Nelhiebel
,
IEEE Trans. Device Mater. Reliab.
8
,
509
(
2008
).
5.
E.
Bano
,
C.
Bane
,
T.
Ouisse
, and
S.
Scharnholz
,
Solid-State Electron.
44
,
63
(
2000
).
6.
L.
Yu
,
K. P.
Cheung
,
J. S.
Suehle
,
J. P.
Campbell
,
K.
Sheng
,
A. J.
Lelis
, and
S. H.
Ryu
,
Mater. Sci. Forum
615–617
,
813
(
2009
).
7.
G.
Pobegen
,
T.
Aichinger
,
A.
Salinaro
, and
T.
Grasser
,
Mater. Sci. Forum
778–780
,
959
(
2014
).
8.
G. Y.
Chung
,
C. C.
Tin
,
J. R.
Williams
,
K.
McDonald
,
M. Di
Ventra
,
S. T.
Pantelides
,
L. C.
Feldman
, and
R. A.
Weller
,
Appl. Phys. Lett.
76
,
1713
(
2000
).
9.
P.
Jamet
,
S.
Dimitrijev
, and
P.
Tanner
,
J. Appl. Phys.
90
,
5058
(
2001
).
10.
V. V.
Afanas'ev
,
A.
Stesmans
,
F.
Ciobanu
,
G.
Pensl
,
K. Y.
Cheong
, and
S.
Dimitrijev
,
Appl. Phys. Lett.
82
,
568
(
2003
).
11.
S.
Dhar
,
L. C.
Feldman
,
K. C.
Chang
,
Y.
Cao
,
L. M.
Porter
,
J.
Bentley
, and
J. R.
Williams
,
J. Appl. Phys.
97
,
074902
(
2005
).
12.
S.
Wang
,
S.
Dhar
,
S. R.
Wang
,
A. C.
Ahyi
,
A.
Franceschetti
,
J. R.
Williams
,
L. C.
Feldman
, and
S. T.
Pantelides
,
Phys. Rev. Lett.
98
,
026101
(
2007
).
13.
P.
Déak
,
J. M.
Knaup
,
T.
Hornos
,
C.
Thill
,
A.
Gali
, and
T.
Frauenheim
,
J. Phys. D: Appl. Phys.
40
,
6242
(
2007
).
14.
X. D.
Chen
,
S.
Dhar
,
T.
Isaacs-Smith
,
J. R.
Williams
,
L. C.
Feldman
, and
P. M.
Mooney
,
J. Appl. Phys.
103
,
033701
(
2008
).
15.
J.
Rozen
,
A. C.
Ahyi
,
X.
Zhu
,
J. R.
Willaims
, and
L. C.
Feldman
,
IEEE Trans. Electron Devices
58
,
3808
(
2011
).
16.
T.
Umeda
,
K.
Esaki
,
R.
Kosugi
,
K.
Fukada
,
T.
Ohshima
,
N.
Morishita
, and
J.
Isoya
,
Appl. Phys. Lett.
99
,
142105
(
2011
).
17.
C. J.
Cochrane
,
P. M.
Lenahan
, and
A. J.
Lelis
,
Appl. Phys. Lett.
102
,
193507
(
2013
).
18.
C. J.
Cochrane
,
P. M.
Lenahan
, and
A. J.
Lelis
,
J. Appl. Phys.
109
,
014506
(
2011
).
19.
C. J.
Cochrane
,
P. M.
Lenahan
, and
A. J.
Lelis
,
Appl. Phys. Lett.
100
,
023509
(
2012
).
20.
T.
Aichinger
,
P. M.
Lenahan
,
B. R.
Tuttle
, and
D.
Peters
,
Appl. Phys. Lett.
100
,
112113
(
2012
).
21.
J. A.
Weil
,
J. R.
Bolton
, and
J. E.
Wertz
,
Electron Paramagnetic Resonance
(
John Wiley & Sons
,
New York
,
1994
).
22.
D. J.
Lépine
,
Phys. Rev. B
6
,
436
(
1972
).
23.
D.
Kaplan
,
I.
Solomon
, and
N. F.
Mott
,
J. Phys. Lett.
39
,
51
(
1978
).
24.
M. A.
Jupina
and
P. M.
Lenahan
,
IEEE Trans. Nucl. Sci.
36
,
1800
(
1989
).
25.
T.
Aichinger
and
P. M.
Lenahan
,
Appl. Phys. Lett.
101
,
083504
(
2012
).
26.
G.
Ghibaudo
,
Electron. Lett.
24
,
543
(
1988
).
27.
G.
Groeseneken
,
H. E.
Maes
,
N.
Beltran
, and
R. F. de
Keersmaecker
,
IEEE Trans. Electron Devices
31
,
42
(
1984
).
28.
G.
Gruber
,
M.
Koch
,
G.
Pobegen
,
M.
Nelhiebel
, and
P.
Hadley
,
Mater. Sci. Forum
740–742
,
365
(
2013
).
29.
G.
Gruber
,
P.
Hadley
,
M.
Koch
,
D.
Peters
, and
T.
Aichinger
,
AIP Conf. Proc.
1583
,
165
(
2014
).
30.
T.
Aichinger
,
P. M.
Lenahan
, and
D.
Peters
,
Mater. Sci. Forum
740–742
,
529
(
2013
).
31.
D. V.
Savchenko
,
E. N.
Kalabukhova
,
E. N.
Mokhov
, and
A.
Pöppl
,
Mater. Sci. Forum
740–742
,
439
(
2013
).
32.
B. R.
Tuttle
,
T.
Aichinger
,
P. M.
Lenahan
, and
S. T.
Pantelides
,
J. Appl. Phys.
114
,
113712
(
2013
).
33.
K.
Szasz
,
X. T.
Trinh
,
N. T.
Son
,
E.
Janzen
, and
A.
Gali
,
J. Appl. Phys.
115
,
073705
(
2014
).
You do not currently have access to this content.