Droplet manipulation and mobility on non-wetting surfaces is of practical importance for diverse applications ranging from micro-fluidic devices, anti-icing, dropwise condensation, and biomedical devices. The use of active external fields has been explored via electric, acoustic, and vibrational, yet moving highly conductive and viscous fluids remains a challenge. Magnetic fields have been used for droplet manipulation; however, usually, the fluid is functionalized to be magnetic, and requires enormous fields of superconducting magnets when transitioning to diamagnetic materials such as water. Here we present a class of active surfaces by stably impregnating active fluids such as ferrofluids into a textured surface. Droplets on such ferrofluid-impregnated surfaces have extremely low hysteresis and high mobility such that they can be propelled by applying relatively low magnetic fields. Our surface is able to manipulate a variety of materials including diamagnetic, conductive and highly viscous fluids, and additionally solid particles.

1.
P.-G. de
Gennes
,
Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves
(
Springer
,
New York
,
2004
).
2.
D.
Quéré
,
Annu. Rev. Mater. Res.
38
,
71
(
2008
).
3.
X.
Deng
,
L.
Mammen
,
H.-J.
Butt
, and
D.
Vollmer
,
Science
335
,
67
(
2012
).
4.
A.
Tuteja
,
W.
Choi
,
M.
Ma
,
J. M.
Mabry
,
S. A.
Mazzella
,
G. C.
Rutledge
,
G. H.
McKinley
, and
R. E.
Cohen
,
Science
318
,
1618
(
2007
).
5.
J. C.
Bird
,
R.
Dhiman
,
H.-M.
Kwon
, and
K. K.
Varanasi
,
Nature
503
,
385
(
2013
).
6.
C.
Duez
,
C.
Ybert
,
C.
Clanet
, and
L.
Bocquet
,
Nat. Phys.
3
,
180
(
2007
).
7.
A. J.
Meuler
,
G. H.
McKinley
, and
R. E.
Cohen
,
ACS Nano
4
,
7048
(
2010
).
8.
S.
Jung
,
M. K.
Tiwari
,
N. V.
Doan
, and
D.
Poulikakos
,
Nat. Commun.
3
,
615
(
2012
).
9.
J.
Lv
,
Y.
Song
,
L.
Jiang
, and
J.
Wang
,
ACS Nano
8
,
3152
(
2014
).
10.
T.
Maitra
,
M. K.
Tiwari
,
C.
Antonini
,
P.
Schoch
,
S.
Jung
,
P.
Eberle
, and
D.
Poulikakos
,
Nano Lett.
14
,
172
(
2014
).
11.
P.
Guo
,
Y.
Zheng
,
M.
Wen
,
C.
Song
,
Y.
Lin
, and
L.
Jiang
,
Adv. Mater.
24
,
2642
(
2012
).
12.
J. B.
Boreyko
and
C. P.
Collier
,
ACS Nano
7
,
1618
(
2013
).
13.
J.
Boreyko
and
C.
Chen
,
Phys. Rev. Lett.
103
,
184501
(
2009
).
14.
N. A.
Patankar
,
Soft Matter
6
,
1613
(
2010
).
15.
C.
Dorrer
and
J.
Rühe
,
Adv. Mater.
20
,
159
(
2008
).
16.
D. M.
Anderson
,
M. K.
Gupta
,
A. A.
Voevodin
,
C. N.
Hunter
,
S. A.
Putnam
,
V. V.
Tsukruk
, and
A. G.
Fedorov
,
ACS Nano
6
,
3262
(
2012
).
17.
N.
Miljkovic
,
R.
Enright
,
Y.
Nam
,
K.
Lopez
,
N.
Dou
,
J.
Sack
, and
E. N.
Wang
,
Nano Lett.
13
,
179
(
2013
).
18.
Y.
Koc
,
A. J. de
Mello
,
G.
McHale
,
M. I.
Newton
,
P.
Roach
, and
N. J.
Shirtcliffe
,
Lab Chip
8
,
582
(
2008
).
19.
W.
Choi
,
M.
Hashimoto
,
A. K.
Ellerbee
,
X.
Chen
,
K. J. M.
Bishop
,
P.
Garstecki
,
H. A.
Stone
, and
G. M.
Whitesides
,
Lab Chip
11
,
3970
(
2011
).
20.
P.
Tabeling
,
Curr. Opin. Biotechnol.
25
,
129
(
2014
).
21.
O. D.
Velev
,
B. G.
Prevo
, and
K. H.
Bhatt
,
Nature
426
,
515
(
2003
).
22.
D. R.
Link
,
E.
Grasland-Mongrain
,
A.
Duri
,
F.
Sarrazin
,
Z.
Cheng
,
G.
Cristobal
,
M.
Marquez
, and
D. A.
Weitz
,
Angew. Chem. Int. Ed.
45
,
2556
(
2006
).
23.
D. 't
Mannetje
,
S.
Ghosh
,
R.
Lagraauw
,
S.
Otten
,
A.
Pit
,
C.
Berendsen
,
J.
Zeegers
,
D. van den
Ende
, and
F.
Mugele
,
Nat. Commun.
5
,
3559
(
2014
).
24.
H.
Mertaniemi
,
V.
Jokinen
,
L.
Sainiemi
,
S.
Franssila
,
A.
Marmur
,
O.
Ikkala
, and
R. H. A.
Ras
,
Adv. Mater.
23
,
2911
(
2011
).
25.
S.
Daniel
,
M. K.
Chaudhury
, and
P.-G. de
Gennes
,
Langmuir
21
,
4240
(
2005
).
26.
P.
Brunet
,
J.
Eggers
, and
R.
Deegan
,
Phys. Rev. Lett.
99
,
144501
(
2007
).
27.
C.-C.
Huang
,
M. Z.
Bazant
, and
T.
Thorsen
,
Lab Chip
10
,
80
(
2010
).
28.
M. Z.
Bazant
,
M. S.
Kilic
,
B. D.
Storey
, and
A.
Ajdari
,
Adv. Colloid Interface Sci.
152
,
48
(
2009
).
29.
S.-K.
Fan
,
T.-H.
Hsieh
, and
D.-Y.
Lin
,
Lab Chip
9
,
1236
(
2009
).
30.
K.
Piroird
,
C.
Clanet
, and
D.
Quéré
,
Phys. Rev. E
85
,
056311
(
2012
).
31.
J. V. I.
Timonen
,
M.
Latikka
,
L.
Leibler
,
R. H. A.
Ras
, and
O.
Ikkala
,
Science
341
,
253
(
2013
).
32.
J.
Yan
,
K.
Chaudhary
,
S. C.
Bae
,
J. A.
Lewis
, and
S.
Granick
,
Nat. Commun.
4
,
1516
(
2013
).
33.
I. F.
Lyuksyutov
,
D. G.
Naugle
, and
K. D. D.
Rathnayaka
,
Appl. Phys. Lett.
85
,
1817
(
2004
).
34.
E.
Beaugnon
and
R.
Tournier
,
Nature
349
,
470
(
1991
).
35.
Y.
Ikezoe
,
N.
Hirota
,
J.
Nakagawa
, and
K.
Kitazawa
,
Nature
393
,
749
(
1998
).
36.
J. D.
Smith
,
R.
Dhiman
,
S.
Anand
,
E.
Reza-Garduno
,
R. E.
Cohen
,
G. H.
McKinley
, and
K. K.
Varanasi
,
Soft Matter
9
,
1772
(
2013
).
37.
D.
Quéré
,
Rep. Prog. Phys.
68
,
2495
(
2005
).
38.
A.
Lafuma
and
D.
Quéré
,
EPL
96
,
56001
(
2011
).
39.
T.-S.
Wong
,
S. H.
Kang
,
S. K. Y.
Tang
,
E. J.
Smythe
,
B. D.
Hatton
,
A.
Grinthal
, and
J.
Aizenberg
,
Nature
477
,
443
(
2011
).
40.
A.
Eifert
,
D.
Paulssen
,
S. N.
Varanakkottu
,
T.
Baier
, and
S.
Hardt
,
Adv. Mater. Interfaces
1
,
1300138
(
2014
).
41.
A.
Carlson
,
P.
Kim
,
G.
Amberg
, and
H. A.
Stone
,
EPL
104
,
34008
(
2013
).
42.
X.
Huang
,
J. D.
Chrisman
, and
N. S.
Zacharia
,
ACS Macro Lett.
2
,
826
(
2013
).
43.
H.
Liu
,
P.
Zhang
,
M.
Liu
,
S.
Wang
, and
L.
Jiang
,
Adv. Mater.
25
,
4477
(
2013
).
44.
S.
Anand
,
A. T.
Paxson
,
R.
Dhiman
,
J. D.
Smith
, and
K. K.
Varanasi
,
ACS Nano
6
,
10122
(
2012
).
45.
K.
Rykaczewski
,
A. T.
Paxson
,
M.
Staymates
,
M. L.
Walker
,
X.
Sun
,
S.
Anand
,
S.
Srinivasan
,
G. H.
McKinley
,
J.
Chinn
,
J. H. J.
Scott
, and
K. K.
Varanasi
,
Sci. Rep.
4
,
4158
(
2014
).
46.
R.
Xiao
,
N.
Miljkovic
,
R.
Enright
, and
E. N.
Wang
,
Sci. Rep.
3
,
1988
(
2013
).
47.
S. B.
Subramanyam
,
K.
Rykaczewski
, and
K. K.
Varanasi
,
Langmuir
29
,
13414
(
2013
).
48.
P.
Kim
,
T.-S.
Wong
,
J.
Alvarenga
,
M. J.
Kreder
,
W. E.
Adorno-Martinez
, and
J.
Aizenberg
,
ACS Nano
6
,
6569
(
2012
).
49.
L.
Chen
,
A.
Geissler
,
E.
Bonaccurso
, and
K.
Zhang
,
ACS Appl. Mater. Interfaces
6
,
6969
(
2014
).
50.
A. K.
Epstein
,
T.-S.
Wong
,
R. A.
Belisle
,
E. M.
Boggs
, and
J.
Aizenberg
,
Proc. Natl. Acad. Sci U.S.A.
109
,
13182
(
2012
).
51.
S. B.
Subramanyam
,
G.
Azimi
, and
K. K.
Varanasi
,
Adv. Mater. Interfaces
1
,
1300068
(
2014
).
52.
J.
Li
,
T.
Kleintschek
,
A.
Rieder
,
Y.
Cheng
,
T.
Baumbach
,
U.
Obst
,
T.
Schwartz
, and
P. A.
Levkin
,
ACS Appl. Mater. Interfaces
5
,
6704
(
2013
).
53.
E.
Ueda
and
P. A.
Levkin
,
Adv. Healthcare Mater.
2
,
1425
(
2013
).
54.
L.
Xiao
,
J.
Li
,
S.
Mieszkin
,
A. Di
Fino
,
A. S.
Clare
,
M. E.
Callow
,
J. A.
Callow
,
M.
Grunze
,
A.
Rosenhahn
, and
P. A.
Levkin
,
ACS Appl. Mater. Interfaces
5
,
10074
(
2013
).
55.
R. E.
Rosensweig
,
Sci. Am.
247
,
136
(
1982
).
56.
R. E.
Rosensweig
,
Annu. Rev. Fluid Mech.
19
,
437
(
1987
).
57.
T. A.
Franklin
, “
Ferrofluid Flow Phenomena
,” MS thesis (
Massachusetts Institute of Technology
,
2003
).
58.
S. S. H.
Tsai
,
I. M.
Griffiths
,
Z.
Li
,
P.
Kim
, and
H. A.
Stone
,
Soft Matter
9
,
8600
(
2013
).
59.
See supplementary material at http://dx.doi.org/10.1063/1.4891439 for Figure 1(c), which displays a typical droplet mobility experiment, where the droplet is accelerated towards the magnet, and for Figure 3(b), which displays a high-speed video of a ferrofluid jet detaching from the ferrofluid cloak.

Supplementary Material

You do not currently have access to this content.